
 
 
C++ PROGRAM MEMORY MODEL,
POINTERS AND REFERENCES 

Problem Solving with Computers-I

Learning Goals
• Review basics of classes

• Defining classes and declaring objects (last lecture)
• Access specifiers: private, public (last lecture)
• Different ways of initializing objects and when to use each:

• Default constructor
• Parametrized constructor
• Parameterized constructor with default values
• Initializer lists

• Develop a mental model of how programs are represented in memory.
• Understand pointer and reference mechanics and how they are used to pass

parameters to functions

C++ Memory Model a.k.a Program’s Memory Regions

• Pointer: A variable that contains the address of another variable

• Declaration: type * pointer_name;

�4

int* p;

Pointers

�5

int* p;
int y = 3; p y

0x100 0x112

How to make a pointer point to something

To access the location of a variable, use the
address operator ‘&’

�6

p
112

y
3

0x100 0x112

Pointer Diagrams:
Diagrams that show the relationship between pointers and pointees

Pointer: p Pointee: y

p points to y

You can change the value of a variable using a pointer !

�7

int* p, y;
y = 3;
p = &y;

*p = 5;

p
y 3

�8

• Change the value of y directly:

• Change the value of y indirectly (via pointer p):

Two ways of changing the value of a variable

Tracing code involving pointers

Q: Which of the following pointer diagrams best represents the outcome of the above code?

�9

int* p;
int x = 10;
p = &x;
*p = *p + 1;

A.
 10x

B.
x

C. Neither, the code is incorrect

 11

p p

Pointer assignment

Q: Which of the following pointer diagrams best represents the outcome of the above code?

�10

int* p1, *p2, x;
p1 = &x;
p2 = p1;

A.

x
B.

x

C. Neither, the code is incorrect

p1

p2

p1 p2

▪ ar is like a pointer to the first element

▪ ar[0] is the same as *ar

▪ ar[2] is the same as *(ar+2)

ar

 100 104 108 112 116

20 30 50 80 90

▪ Use pointers to pass arrays in functions
▪ Use pointer arithmetic to access arrays more conveniently

Arrays and pointers

Pointer Arithmetic

int* p;
p = arr;
p = p + 1;
*p = *p + 1;

Draw the array ar after the above code is executed

int ar[]={20, 30, 50, 80, 90};

Which of the following is true after IncrementPtr(q)is called
in the above code:

void IncrementPtr(int* p){
 p++;
}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int* q = arr;
IncrementPtr(q);

A. ‘q’ points to the next element in the array with value 60
B. ‘q’ points to the first element in the array with value 50

How should we implement IncrementPtr(),so that ‘q’ points to 60
when the following code executes?

void IncrementPtr(int** p){
 p++;
}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int* q = arr;
IncrementPtr(&q);

A. p = p + 1;
B. &p = &p + 1;
C. *p= *p + 1;
D. p= &p+1;

Pointer pitfalls
• Dereferencing a pointer that does not point to anything results in

undefined behavior.

• On most occasions your program will crash

• Segmentation faults: Program crashes because code tried to access
memory location that either doesn’t exist or you don’t have access to

Two important facts about Pointers
�16

1) A pointer can only point to one type –(basic or derived) such as int,
char, a struct, another pointer, etc

2) After declaring a pointer: int *ptr;
 ptr doesn’t actually point to anything yet.
 We can either:

➢make it point to something that already exists, OR
➢allocate room in memory for something new that it will point to

Pointer Arithmetic
▪ What if we have an array of large structs (objects)?
▪C++ takes care of it: In reality, ptr+1 doesn’t add 1 to the

memory address, but rather adds the size of the array
element.
▪C++ knows the size of the thing a pointer points to – every

addition or subtraction moves that many bytes: 1 byte for a
char, 4 bytes for an int, etc.

References in C++

int main() {
 int d = 5;
 int &e = d;
}

A reference in C++ is an alias for
another variable

!18

References in C++

int main() {
 int d = 5;
 int &e = d;
 int f = 10;
 e = f;

}

How does the diagram change with this code?

C. 10

10
d:
e:

10f:

A. B.
5

10

D. Other or error

!19

d:
e:
f:

d:

e:
f:

!20

Passing arguments to functions by reference and by address

Suppose the user enters a value of 125 for totTime
What is the output of the code?

Next time
• Dynamic Memory Management in C++

