C++ PROGRAM MEMORY MODEL,
POINTERS AND REFERENCES

Problem Solving with Computers-| ++
(: GitHub

)1\

L
Learning Goals

- Review basics of classes
- Defining classes and declaring objects (last lecture)
- Access specifiers: private, public (last lecture)
- Different ways of initializing objects and when to use each:
- Default constructor
- Parametrized constructor
- Parameterized constructor with default values
* Initializer lists
* Develop a mental model of how programs are represented in memory.

« Understand pointer and reference mechanics and how they are used to pass
parameters to functions

L
C++ Memory Model a.k.a Program’s Memory Regions

Code memory

AW N -

* Static memory

3000
3001

Stack

3200
3201
3202
3203

Heap

9400
9401
9402

The code regions store program instructions. myGlobal is a global variable and is stored in the
static memory region. Code and static regions last for the entire program execution.

Pointers

e Pointer: A variable that contains the address of another variable

e Declaration:

int¥*

P

type * pointer name,

B W N -

3000
3001

3200
3201
3202
3203

9400
9401
9402

Code memory

" Static memory

Stack

MAN, | SUCK AT THIS GAME.
C AN YOU GIVE ME.

A FEW POINTERS?

0x3A28213A

0Ox6339292C,

Ox 7363682E.
| HATE YOU.

Y

How to make a pointer point to something

int* p; 0x100 0x112

int y = 3; = v

To access the location of a variable, use the
address operator ‘&’

Pointer Diagrams:
Diagrams that show the relationship between pointers and pointees

p pointsto y
0x100 0x112

Pointer: p 112 3 Pointee: y

You can change the value of a variable using a pointer !

int* P, Y-/
y = 3;
P = &y,

Two ways of changing the value of a variable

P
* Change the value of y directly: v| 3

* Change the value of y indirectly (via pointer p):

Tracing code involving pointers

int* p;
int x = 10;

Q: Which of the following pointer diagrams best represents the outcome of the above code?

A. B.
5% |10 x |11

P S

C. Neither, the code is incorrect

Pointer assignment

int* pl, *p2, X;
pl = &X;
p2 = pl;

Q: Which of the following pointer diagrams best represents the outcome of the above code?

A. B.
X X

/V W
1 / pl \ p2

p2 C. Neither, the code is incorrect

Arrays and pointers

100 104 108 112 116
20 |30 50 |80 |90

ar

= ar 1s like a pointer to the first element

= ar[0] 1sthe same as *ar

» ar[2] i1sthe same as * (ar+2)

Use pointers to pass arrays in functions
Use pointer arithmetic to access arrays more conveniently

Pointer Arithmetic
int ar[]={20, 30, 50, 80, 90};

int* p;
p = arr;
P=p+1;
*p = *p + 1;

Draw the array ar after the above code is executed

void IncrementPtr(int* p){

ptt;
}
int arr[3] = {50, 60, 70}; ql
int* q = arr;
IncrementPtr ;
() 50 | 60 | 70
arr

Which of the following 1s true after IncrementPtr (q) is called
1n the above code:

A. ‘g’ points to the next element in the array with value 60

B. ‘g’ points to the first element in the array with value 50

How should we implement IncrementPtr (), so that ‘q’ points to 60
when the following code executes?

volid IncrementPtr(int** p){

ptt;
}
int arr[3] = {50, 60, 70}; q
int* g = arr; 1
IncrementPtr (&q);
A p= p+ 1 50 60 70
B. &p = &p + 1; atr
C. *p= *p + 1;
D. p= &p+l;

Pointer pitfalls

* Dereferencing a pointer that does not point to anything results in
undefined behavior.

* On most occasions your program will crash

* Segmentation faults: Program crashes because code tried to access
memory location that either doesn’t exist or you don’t have access to

Two important facts about Pointers

A pointer can only point to one type —(basic or derived) such as int,
char, a struct, another pointer, etc

After declaring a pointer: int *ptr;
ptr doesn’t actually point to anything yet.

We can either:
make 1t point to something that already exists, OR
allocate room 1n memory for something new that 1t will point to

Pointer Arithmetic

 What if we have an array of large structs (objects)?

» C++ takes care of it: In reality, ptr+1 doesn’t add 1 to the
memory address, but rather adds the size of the array
clement.

» C++ knows the size of the thing a pointer points to — every
addition or subtraction moves that many bytes: 1 byte for a
char, 4 bytes for an 1nt, etc.

References in C++
A reference in C++ is an alias for

int main() { another variable

int d = 5;
int & = d:
¥

References in C++

int main () {
int d = 5; . . .
int se = d: How does the diagram change with this code?
int £ = 10;
e = f£;
d:
: A e: [0 T
e .
t 10 £ . 10

d:
c. o 10 D. Other or error
f

Passing arguments to functions by reference and by address

#include <iostream>

pelogptanespacen Suppose the user enters a value of 125 for totTime

void ConvHrMin (int timeVal, int& hrVal, inté& minval) { What iS the OUtpUt Of the COde?
hrval = timeval / 60;
minVal = timeVal % 60;

}

int main() {
int totTime;
int usrHr;
int usrMin;

totTime = 0;
usrHr = 0;

usrMin = 0;

cout << "Enter total minutes: ";
cin >> totTime;

ConvHrMin (totTime, usrHr, usrMin) ;
cout << "Equals: ";
cout << usrHr << " hrs ";

cout << usrMin << " min" << endl;

return 0;

Next time

- Dynamic Memory Management in C++

