
 
 
C++ PROGRAM MEMORY MODEL,
POINTERS AND REFERENCES 

Problem Solving with Computers-I

Learning Goals
• Review basics of classes

• Defining classes and declaring objects (last lecture)
• Access specifiers: private, public (last lecture)
• Different ways of initializing objects and when to use each:

• Default constructor
• Parametrized constructor
• Parameterized constructor with default values
• Initializer lists

• Develop a mental model of how programs are represented in memory.
• Understand pointer and reference mechanics and how they are used to pass

parameters to functions

C++ Memory Model a.k.a Program’s Memory Regions

• Pointer: A variable that contains the address of another variable

• Declaration: type * pointer_name;

�4

int* p;

Pointers

�5

int* p;
int y = 3; p y

0x100 0x112

How to make a pointer point to something

To access the location of a variable, use the
address operator ‘&’

�6

p
112

y
3

0x100 0x112

Pointer Diagrams:
Diagrams that show the relationship between pointers and pointees

Pointer: p Pointee: y

p points to y

You can change the value of a variable using a pointer !

�7

int* p, y;
y = 3;
p = &y;

*p = 5;

p
y 3

�8

• Change the value of y directly:

• Change the value of y indirectly (via pointer p):

Two ways of changing the value of a variable

▪ ar is like a pointer to the first element

▪ ar[0] is the same as *ar

▪ ar[2] is the same as *(ar+2)

ar

 100 104 108 112 116

20 30 50 80 90

▪ Use pointers to pass arrays in functions
▪ Use pointer arithmetic to access arrays more conveniently

Arrays and pointers

Next time
• Dynamic Memory Management in C++

