
POINTERS AND REFERENCES
DYNAMIC MEMORY 

Problem Solving with Computers-I

Learning Goals
• Understand pointer mechanics and how they are used to pass parameters to

functions
• Creating data on the heap with new and delete
• Difference between data on the heap vs. data on the stack
• Functions returning pointers

Tracing code involving pointers

Q: Which of the following pointer diagrams best represents the outcome of the above code?

�3

int* p;
int x = 10;
p = &x;
*p = *p + 1;

A.
 10x

B.
x

C. Neither, the code is incorrect

 11

p p

Pointer assignment

Q: Which of the following pointer diagrams best represents the outcome of the above code?

�4

int* p1, *p2, x;
p1 = &x;
p2 = p1;

A.

x
B.

x

C. Neither, the code is incorrect

p1

p2

p1 p2

strings and c-strings: What is the output?

int main(int argc, char const *argv[])
{
 string manu = "Lamborghini";
 const char* c_manu = manu.c_str();

 string new_manu(manu);
 manu[0] = 'P';

 cout<< c_manu<<endl;
 cout<< new_manu<<endl;

 return 0;
}

Constant pointers and pointers to constants

const char* p1;
char* const p2;
const char* const p3;

What is the difference between these declarations?

Which of the following is true after IncrementPtr(q)is called
in the above code:

void IncrementPtr(int* p){
 p++;
}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int* q = arr;
IncrementPtr(q);

A. ‘q’ points to the next element in the array with value 60
B. ‘q’ points to the first element in the array with value 50

How should we implement IncrementPtr(),so that ‘q’ points to 60
when the following code executes?
void IncrementPtr(int** p){
 p++;
}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int* q = arr;
IncrementPtr(&q);

A. p = p + 1;
B. &p = &p + 1;
C. *p= *p + 1;
D. p= &p+1;

Pointer pitfalls
• Dereferencing a pointer that does not point to anything results in

undefined behavior.

• On most occasions your program will crash

• Segmentation faults: Program crashes because code tried to access
memory location that either doesn’t exist or you don’t have access to

Two important facts about Pointers
�10

1) A pointer can only point to one type –(basic or derived) such as int,
char, a struct, another pointer, etc

2) After declaring a pointer: int *ptr;
 ptr doesn’t actually point to anything yet.
 We can either:

➢make it point to something that already exists, OR
➢allocate room in memory for something new that it will point to

Pointer Arithmetic
▪ What if we have an array of large structs (objects)?
▪C++ takes care of it: In reality, ptr+1 doesn’t add 1 to the

memory address, but rather adds the size of the array
element.
▪C++ knows the size of the thing a pointer points to – every

addition or subtraction moves that many bytes: 1 byte for a
char, 4 bytes for an int, etc.

C++ Memory Model: Stack
• Stack: Segment of memory

managed automatically using a
Last in First Out (LIFO) principle

• Think of it like a stack of books!

C++ Memory Model: Heap
• Heap: Segment of memory

managed by the programmer

• Data created on the heap stays
there

– FOREVER or

– until the programmer explicitly
deletes it

Creating data on the Heap: new

To allocate memory on the heap use the new operator

Deleting data on the Heap: delete

To free memory on the heap use the delete operator

Dynamic memory management = Managing data on the heap

int* p= new int; //creates a new integer on the
heap

SuperHero* n = new SuperHero;

 //creates a new Student on the
heap

delete p; //Frees the integer

delete n; //Frees the Student

The case of the disappearing data!
int getInt(){

int x=5;
return x;

}
int* getAddressOfInt(){

int x=10;
return &x;

}
int main(){
 int y=0, *p=nullptr, z=0;
 y = getInt();
 p = getAddressOfInt();
 z = *p;
 cout<<y<<", "<<z<<", "<<*p<<endl;
}

What is the output?
A. 5, 0, 10
B. 5, 10, 10
C. Something else

Heap vs. stack
 1 #include <iostream>
 2 using namespace std;
 3
 4 int* createAnIntArray(int len){
 5
 6 int arr[len];
 7 return arr;
 8
 9 }

Does the above function correctly return an array of integers?
A. Yes
B. No

Next time
• Rule of three and Linked Lists

