POINTERS AND REFERENCES
DYNAMIC MEMORY

Problem Solving with Computers-I C
| ' GitHub
yacIvs® ;::;«::‘: o
%qui&u\\}wza gacer oo¥ 3

0 0
I\

e
Learning Goals

. P and how they are used to/pass parameters to
S

» Creating data on thecheap with new and delete
- Difference between data on theheap vs. data on the stack

int* p;

int x = 10; 2 (P
== -4 A= X Ph_‘*
P PO'MH-T b L

Q: Which of e following pointer diagrams best represents the outcome of the above code?

C. Neither, the code is incorrect

strings and c-strings: What is the output?

int main(int argc, char const xargvl[])

{

o BT 3 \,‘2,3},

string manu = "Lamborghini"; are ‘ A ‘ 2)A_JEi-v

% c_manu = manu.c_str();
oxpooo O

string new_manu(manu);
manul[@] = 'P';

000
Cowkll A7 > 74 ox 8

\\ 7,
chor & < [w = P

return 0; ﬁ?;f\ \ﬁ \ ic/ \‘\é
< 5 ‘ 2 <

cer (Ll C.
shirg, & =

cout<< c_manu<<endl;
cout<< new_manu<<endl;

« “o
ope .

int main(int argc, char const xargvl[])

{

string manu = "lamborghini';
* €_manu = manu./c_str()}

string new_manu(manu);
manul[@] = 'P';

cout<< c_manu<<endl;
cout<< new_manu<<endl;

return 0;

Constant pointers and pointers to constants

* pl;

charx const p2; What is the difference between these declarations?
const charx const p3;

o) _/)l"‘ P € S]ﬂ'/’
e X PR

q 26" t 1, \)o:nk' Pl S

void IncrementPtr(int* p){ At < 07”""/ //no

++; /popA) »00 Y
) P //P E_"'// OX

nain®) 3 |
int @FE[3] = {50, 60, 70};|intx='Y _
int*(g =¢arr; inkwp: 120>
In tPt : -
ncremen rﬁ _5=0
% ar .
=— @ \ 2
Which of the following is true after IncrementPtr (q) is called
in the above code:
ast £ 1—3

gw(oﬂ-ﬂ)

A. 'q’ points to the next element in the array with value 60
@ q’ points to the first element in the array with value 50

q 13 yassea 5;]\'01*‘2’

How should we implement IncrementPtr () ,so that ‘q’ points to 60
when the following code executes? pisea Poinw" o (ints)

void IncrementPtyp(int** p){ ?
pt+;
? (+P)
int arr[3] = {50, 60, 70}; q
int* q = arr; \\
o . 4
IncrementPtr(S:q)\,,3 fags"'\b e 06“""’2 2,
~—~AhR. p= pt+1l; h? yonw ™ T 50 | 60 | 70 .
. ’) k\su'{)"\ \Q6
B. p = &p + 1; oo w A) o
*= * . r a‘qu‘f‘ *)\"“% ?.s B
p= *p + 1; ey e O s LA '
) p= &p+1' Civee P Yv(ﬂ‘ o \",,{\K ﬂ(‘,xg *?) ua‘,‘v,r.
) ’ oo Zi\\/* r‘o-‘k:“"@
S o
§2q €1 > 175 ¢

Pointer pitfalls

» Dereferencing a pointer that does not point to anything results in
undefined behavior.

* On most occasions your program will crash

« Segmentation faults: Program crashes because code tried to access
memory location that either doesn’t exist or you don’t have access to

Two important facts about Pointers

A pointer can only point to one type —(basic or derived) such as int,
char, a struct, another pointer, etc

After declaring a pointer: int *ptr;
ptr doesn’t actually point to anything yet.
We can either:
make it point to something that already exists, OR
allocate room in memory for something new that it will point to

Pointer Arithmetic

= What if we have an array of large structs (objects)?

= C++ takes care of it: In reality, ptr+1 doesn’t add 1 to the
memory address, but rather adds the size of the array
element.

= C++ knows the size of the thing a pointer points to — every
addition or subtraction moves that many bytes: 1 byte for a
char, 4 bytes for an int, etc.

C++ Memory Model: Stack
Address 0x00000000

 Stack: Segment of memory

managed automatically using a Text (R/0)
Last in First Out (LIFO) principle

 Think of 1t like a stack of books! Global Data

Heap

Stack

<« Address OxFFFFFFFF

C++ Memory Model: Heap

« Heap: Segment of memory
managed by the programmer

« Data created on the heap stays
there

— FOREVER or

— until the programmer explicitly
deletes it

Address 0x00000000
Text (R/0)

Global Data

Heap

Stack

ress OxXFFFFFFFF

Creating data on the Heap: new

To allocate memory on the heap use the new operator

Heap

Stack

«—— Address OxFFFFFFFF

Deleting data on the Heap: delete

To free memory on the heap use the delete operator

Heap

Stack

«—— Address OxFFFFFFFF

Dynamic memory management = Managing data on the heap
int* p= new int; //creates a new integer on the
heap

SuperHero* n = new SuperHero;

//creates a new Student on the

heap

delete p; //Frees the integer

delete n; //Frees the Student

The case of the disappearing data!

int getInt(){ What is the output?
int x=5; A. 50,10

} return Xx; B. 5’ 10, 10

int* getAddressOfInt()({ C. Something else
int x=10;
return &Xx;

}

int main(){
int y=0, *p=nullptr, z=0;

y = getInt();
p = getAddressOfInt();
zZ = *p;

cout<<y<<", '"<<z<<", "<<*p<<endl;

e
Heap vs. stack

1 #include <iostream>

2 using namespace std;

3

4 intx createAnIntArray(int len){

int arr[len];
return arr;

O 00 J O Ul

}

Does the above function correctly return an array of integers?
A. Yes
B. No

Next time

* Rule of three and Linked Lists

