
HEAP VS STACK 
DYNAMIC MEMORY
LINKED LISTS

Problem Solving with Computers-II

C++ Memory Model: Stack
• Stack: Segment of memory

managed automatically using a
Last in First Out (LIFO) principle

• Think of it like a stack of books!

C++ Memory Model: Heap
• Heap: Segment of memory

managed by the programmer

• Data created on the heap stays
there

– FOREVER or

– until the programmer explicitly
deletes it

Creating data on the Heap: new

To allocate memory on the heap use the new operator

Deleting data on the Heap: delete

To free memory on the heap use the delete operator

Dynamic memory management = Managing data on the heap

int* p= new int; //creates a new integer on the
heap

SuperHero* n = new SuperHero;

 //creates a new Student on the
heap

delete p; //Frees the integer

delete n; //Frees the Student

The case of the disappearing data!
int getInt(){

int x=5;
return x;

}
int* getAddressOfInt(){

int x=10;
return &x;

}
int main(){
 int y=0, *p=nullptr, z=0;
 y = getInt();
 p = getAddressOfInt();
 z = *p;
 cout<<y<<", "<<z<<", "<<*p<<endl;
}

What is the output?
A. 5, 0, 10
B. 5, 10, 10
C. Something else

Heap vs. stack
 1 #include <iostream>
 2 using namespace std;
 3
 4 int* createAnIntArray(int len){
 5
 6 int arr[len];
 7 return arr;
 8
 9 }

Does the above function correctly return an array of integers?
A. Yes
B. No

Memory Errors
• Memory Leak: Program does not free memory allocated on the heap.

• Segmentation Fault: Code tries to access an invalid memory location

Linked Lists
!10

Linked List

Array List 10 20

 0

 30

What is the key difference between the two?

 0 0

Questions you must ask about any data structure:
!11

• What operations does the data structure support?
 A linked list supports the following operations:

1. Insert (a value to the head)
2. Append (a value to the tail)
3. Delete (a value)
4. Search (for a value)
5. Min
6. Max
7. Print all values

• How do you implement each operation?
• How fast is each operation?

Linked-list as an Abstract Data Type (ADT)
class LinkedList {
public:
 LinkedList();
 ~LinkedList();
 // other public methods

private:
 struct Node {
 int info;
 Node* next;
 };
 Node* head;
 Node* tail;
};

Next time
• Rule of Three
• Linked Lists contd.

