LINKED LISTS (CONTD)
RULE OF THREE
OPERATOR OVERLOADING

Problem Solving with Computers-II C
| ' GitHub
yacIvs® ;::;«::: o
usanmam“lxmﬁ a_::.‘"f‘?'*:/"" 4]

0 0
I\

Memory Errors

* Memory Leak: Program does not free memory allocated on the heap.

B \ 0 (f’)D (D
0’ 1040 *% - mew node;

gy @M@-F%r‘—:'

+ Segmentation Fault: Code tries to access an invalid memory location
@ De referentt A null poinker // Dq-"ru'kld act o se2) foudt

iny+ p = nul\ phe; 1 4 l’@

"
14

Tl L& FPi /) sepfentt

e Seg foutt

OL&&L Y [/ donl-1¢

.. T 5L i
RULE OF THREE

If a class overload one (or more) of the following methods, it should overload all
three methods:

1. Destructor
2. Copy constructor
3. Copy assignment

The questions we ask are:

1. What is the behavior of these defaults?

2. What is the desired behavior ?

3. How should we over-ride these methods?

void test_append 0 () {
LinkedList 11;
1l.append(10);
ll.print();

}

Assume: What is the result of running the above code?
A. Compi

* Default destructor ompiler error

< B.Memory leak W nofun Oan mo} clean? by
* Default copy constructor ? Segmentation fault Augw P

* Default copy assignment D. None of the above

Why do we need to write a destructor for LinkedList?

A. To free LinkedList objects

B. To free Nodes in a LinkedList
C.BothAand B

D. None of the above

Behavior of default copy Construct

void test copy constructor(){

LinkedList(l::l.; J implécst catt P

Conghwe e

11 .append(1);
141 .append(2);

LinkedList(@Zill}; [l topy womhucto”
(7 o3

// calls the copy c'’tor

ll.print(); (?;_\gil
12.print(); \’:\. 2
} ; /)

J

Assume:
destructor: overloaded
copy constructor: default

~

p d" onO-

12
- heed
Q otk

What is the output?
A. Compiler error

. All of the above
E. None of the above

—>
_» B. Memory leak

Jyle
5 Segmentation fault Jo
/

dteh™y
alezs")’“"”,

Iy

Behavior of default copy assignment
1:1->2->5->null

void default assignment 1(LinkedList&

Linkedrist (i3 Led Letb n Z COP‘[cont iy
12 = 11; 02 gu?.,

- b.\}
} /r &N\J‘:’,}. JV L 92 (-U) J

o
* What is the behavior of the default agsignment operator?
Assume: !,1‘
* Overloaded destructor T)
x w)
Default copy constructor 13- DW@ C 277

* Default copy assignment

Behavior of default copy assignment

void test default assignment 2(){

LinkedList 11, 12; 1 E—ﬂ)’)@

ll.append(1l);)/"
11.append(2) 02 s gont &
m

12 = 11; Aespuck o2 u
12.print() wn = 30

}

What is the result of running the above code? Assume:

A.Prints1,2 V' *

B. Segmentation fault V4 Overloaded destructor

. Memory leak * Default copy constructor

A &B
E.A,Band C

* Default copy assignment

Behavior of default copy assignment

void test default assignment 3(){
LinkedList 11;

ll.append(1l); o W\@
11.append(2) 02 3!
LinkedList 12{11}; \ gand ot I
12.append(10); o s dudeed bty feut
12.append(20); gty e ’MM* s d , B
12 = 11; (s mod one Lot
12.print() o W)

}

What is the result of running the above code? Assume:

A.Prints 1,2

B. Segmentation fault \/
C. Memory leak

D. A 4B

(E):\ Band C

* Overloaded destructor
* Overloaded copy constructor
* Default copy assignment

e
Overloading Binary Comparison Operators

We would like to be able to compare two objects of the class using the
following operators

and possibly others

void isEqual(const LinkedList & Ist1, const LinkedList &Ist2){
if(Ist1 == Ist2)
cout<<‘“Lists are equal”’<<end]l;
else
cout<<“Lists are not equal”’<<endl;

Overloading Binary Arithmetic Operators
We would like to be able to add two points as follows

LinkedList 11, 12;
//append nodes to 11 and 12;

LinkedList 13 = 11 + 12 ;

Overloading input/output stream

Wouldn'’t it be convenient if we could do this:

LinkedList list;
cout<<list; //prints all the elements of list

Overloading Binary Comparison Operators

We would like to be able to compare two objects of the class using the
following operators

and possibly others

Last class: overloaded == for LinkedList

Recursion

Describe a linked-list recursively

Which of the following methods of LinkedList CANNOT be
implemented using recursion?

A. Find the sum of all the values

B. Print all the values

C. Search for a value

D. Delete all the nodes in a linked list

E. All the above can be implemented using recursion

Tl GG DG

int IntList::sum(){

//Return the sum of all elements in a linked list

=
Helper functions

« Sometimes your functions takes an input that is not easy to recurse on

* In that case define a new function with appropriate parameters: This is
your helper function

 Call the helper function to perform the recursion

» Usually the helper function is private

For example

Int IntList::sum(){

return sum(head);
//helper function that performs the recursion.

“ DG G

int IntList::sum(Node* p){

TG CelD

bool IntList::clear(Node* p){

Concept QueStiOn class Node {
public:

LinkedList::~LinkedList(){ int info:
delete head; Node *next:
b b
Which of the following objects are deleted when the destructor of Linked-list is called?
head tail

(A) f
(B): only the first node
(C):Aand B

(D): All the nodes of the linked list
(E): Aand D

Concept question

LinkedList::~LinkedList(){ Node: :~Node(){
delete head; delete next;
s I3
Which of the following objects are deleted when the destructor of Linked-list is called?
head tail

T

(B): All the nodes in the linked-list

(C):Aand B

(D): Program crashes with a segmentation fault
(E): None of the above

LinkedList::~LinkedList(){ Node: :~Node(){
delete head; delete next;

} ¥
head tail

T~ D~

Next time

* Binary Search Trees

Next time

* Recursion + PAO1

