BINARY SEARCH TREES

Problem Solving with Computers-II C | '
ae dosa:a;“:d;
"‘n.cr:‘q“ na“\espac
usd > no\\

Hieowdared A tree has following general properties:

* One node 1s distinguished as a root; Brraee, Ve
» Every node (exclude a root) is connected 1
by a directed edge from exactly one other
node; O
|37} A direction is: parent -> children yd J_ N
» Leaf node: Node that has no children \ d

2 S the coot nods

' 11d ven
leck et 5 g5 ore 2SN (/>

9_is mw(c»f % > &8

Which of the following is/are a tree? ‘”‘;’f . *{JS’?‘C
AV @ B.”

& ng\e wode Yree

C.¥X

(D)asB
‘Y\O%M P

core AV E. All of A-C

- e
BimarysSeareh Trees (esTd L/L(o 17 {20\

- What are the operations supported? s Gulied W~

Al opeohiows fuok G “‘f”wk) by a‘:m? OV -
coryed affay fesk delefiow > 1NSCL

- What are the running times of these operations?

- How do you implement the BST i.e. operations supported by it?

=
Sorted arrays vs Binary Search Trees (BST)

e ’o,/\f
Operations \ ﬂ-(

Min 017—3“°

Max E

Successor - next kigar key cucesser (200
Predecessor- next cnella? byl 4. . gcavda

Search wpecie 9§ binowey seavtla
Insert fast in BST
Delete S

Print elements in order

Binary Search Tree — What is it?
— VAAnA~— —

Each node:

» stores a key (k)

» has a pointer to left child, right child
and parent (optional)

« Satisfies the SearchrTree Property

, For any node,
T e Keys in node’s left subtree <= Node’s key
Node’s key < Keys in node’s right subtree

keys (L) % K Keg (Tat%))

Do the keys have to be integers?

BSTs allow efficient search!

Searcdir 4 voo¥
- + Start at the root;

+ Trace down a path by comparing k with the key of the
current node x:

- If the keys are equal: we have found the key
- If k <key[x] search in the left subtree of x
- If k> key[x] search in the right subtree of x

Search for 41, then search fo
foor 5

afent Tode (no
node in a BST @ €<

A
class BSTNode {
(44 \
public: ley > W
BSTNode* left; 12 1\
BSTNode* right; a Tor NORY
o yed Ui
BSTNode* parent; Yod¢ ine Linve
int const data; :
@ ek NodL b
BSTNode(const int & d) : data(d) { mF detey
left = right = parent = nullptr; (ode next

};

!]

Define the BST ADT

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements in order

Traversing down the tree Cless bet 5

anak: "ll'
Suppose n is a pointer to the root. What is the output 8T Nodt *

of the following code:
n = n->left;
n = n->right;
cout<<n->data<<endl;
A. 42
B. 32
C. 12

41

E. Segfault

Traversing up the tree n=> ekt

“ °
Suppose n is a pointer to the node with value 50.

+ What is the output of the following code:

n = n->parent; /

Vs v
n = n->parent; nz N pa"wk al

<

n = n->left;
null pYY

cout<<n->data<<endl;

A. 42
& 5 +7 =
39 DSTNodL
12 Lowile Cg*”-) 3
D. 45 nen-> cighrz

E. Segfault conk 2L M = Ocke,

*Insert 40
- Search for the key
-Insert at the spot you expected to find it

Ppot ML in emord

i lo;eg oA | auwllpm | (2

gt fighr frert Sl

T
Max

Goal: find the maximum key value in a BST

Following right child pointers from the root, until a @
leaf node is encountered. The least node has the max

value
Alg: int BST: :max () e a 0 @
& © &
)

Maximum = 20

Min

Goal: find the minimum key value in a BST

Start at the root. @

Follow child pointers from the root, until a

leaf node is encountered e @

Leaf node has the min key value
Alg: int BST in () o a 0 @
g:in ::min e o @
©

Min="?

In order traversal: print elements in sorted order

e Algorithm Inorder(tree)
1. Traverse the left subtree, i.e., call Inorder(left-subtree)
a e 2. Visit the root.
3. Traverse the right subtree, i.e., call Inorder(right-subtree)

Pre-order traversal: nice way to linearize your tree!

e Algorithm Preorder(tree)
1. Visit the root.
@ e 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
3. Traverse the right subtree, i.e., call Preorder(right-subtree)

Post-order traversal: use in recursive destructors!

e Algorithm Postorder(tree)
1. Traverse the left subtree, i.e., call Postorder(left-subtree)
@ 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
e 3. Visit the root.

Predecessor: Next smallest element
e - What is the predecessor of 327

* What is the predecessor of 457

Successor: Next largest element

e - What is the successor of 45?
- What is the successor of 507?

@ @ - What is the successor of 607?

Delete: Case 1

e Case 1: Node is a leaf node
* Set parent’s (left/right) child pointer to null

@ @ * Delete the node

® o6 @

Delete: Case 2

e Case 2 Node has only one child
* Replace the node by its only child

Delete: Case 3
e Case 3 Node has two children

- Can we still replace the node by one of its

a @ children? Why or Why not?

® o6 @

Binary Search

- Binary search. Given value and sorted array a[], find index i such
that a[1i] = value, or report that no such index exists.

- Invariant. Algorithm maintains a[lo] =value =< a[hi].

- Ex. Binary search for 33.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0O 1 2 3 4 5 66 7 8 9 10 11 12 13 14

