
RUNNING TIME ANALYSIS

Problem Solving with Computers-II

Performance questions

- How efficient is a particular algorithm?
 - CPU time usage (Running time complexity)
 - Memory usage
 - Disk usage
 - Network usage
- Why does this matter?
 - Computers are getting faster, so is this really important?
 - Data sets are getting larger does this impact running times?

How can we measure time efficiency of algorithms?

- One way is to measure the absolute running time
- Pros? Cons?

```
clock_t t;
t = clock();

//Code under test
t = clock() - t;
```

Which implementation is significantly faster?

```
A.
    function F(n) {
        if (n == 1) return 1
        if (n == 2) return 1
        return F(n-1) + F(n-2)
    }
    fill
}
```

```
function F(n) {
   Create an array fib[1..n]
   fib[1] = 1
   fib[2] = 1
   for i = 3 to n:
      fib[i] = fib[i-1] + fib[i-2]
   return fib[n]
}
```

C. Both are almost equally fast

A better question: How does the running time grow as a function of input size

```
function F(n) {
    if (n == 1) return 1
    if (n == 2) return 1

return F(n-1) + F(n-2)
}

function F(n) {
    Create an array fib[1..n]
    fib[1] = 1
    fib[2] = 1
    for i = 3 to n:
        fib[i] = fib[i-1] + fib[i-2]
    return fib[n]
}
```

The "right" question is: How does the running time grow? E.g. How long does it take to compute F(200)?let's say on....

NEC Earth Simulator

Can perform up to 40 trillion operations per second.

The running time of the recursive implementation

The Earth simulator needs 2^{92} seconds for F_{200} .

Time in seconds

210

220

230

240

270

Interpretation

17 minutes

12 days

32 years

cave paintings

The big bang!

```
function F(n) {
    if (n == 1) return 1
    if (n == 2) return 1
    return F(n-1) + F(n-2)
}
```

Let's try calculating F₂₀₀ using the iterative algorithm on my laptop.....

Goals for measuring time efficiency

Focus on the impact of the algorithm:

Simplify the analysis of running time by ignoring "details" which may be an artifact of the underlying implementation:

- E.g., 1000001 ≈ 1000000
- Similarly, 3n² ≈ n²

Focus on trends as input size increases (asymptotic behavior):

How does the running time of an algorithm increases with the size of the input in the limit (for large input sizes)

Counting steps (instead of absolute time)

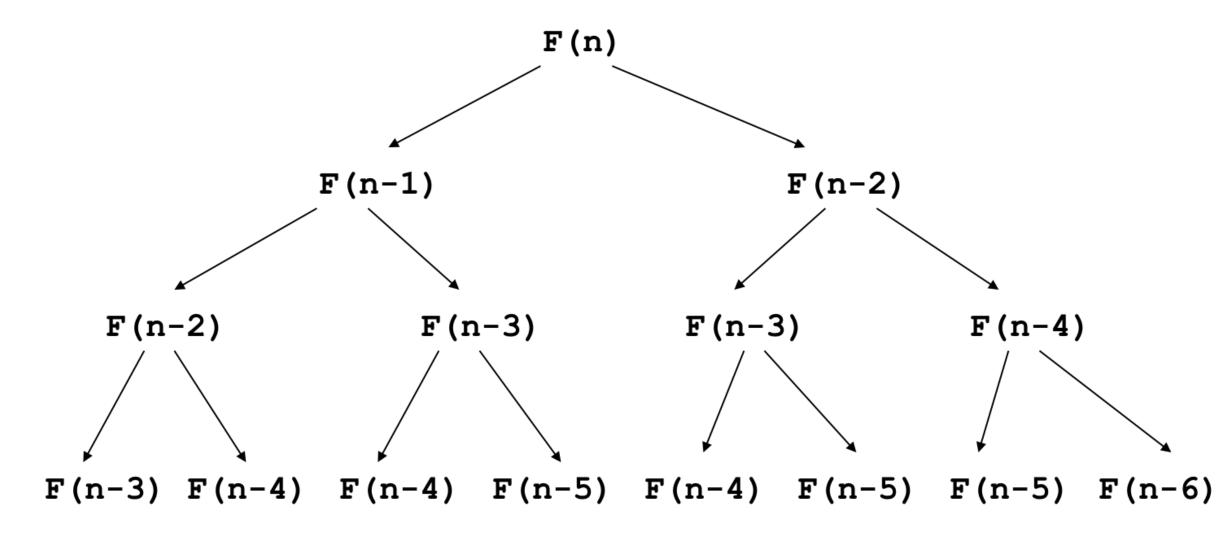
- Every computer can do some primitive operations in constant time:
 - Data movement (assignment)
 - Control statements (branch, function call, return)
 - Arithmetic and logical operations
- By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm

Running Time Complexity

Start by counting the primitive operations

```
/* N is the length of the array*/
int sumArray(int arr[], int N)
{
    int result=0;
    for(int i=0; i < N; i++)
        result+=arr[i];
    return result;
}</pre>
```

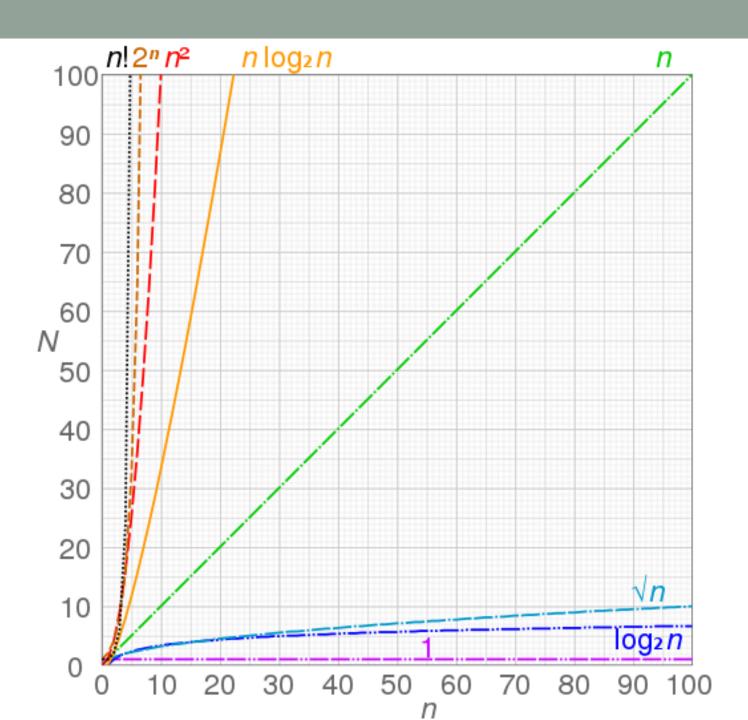
Big-O notation


N	Steps = 5*N +3
1	8
10	53
1000	5003
100000	500003
10000000	50000003

- Simplification 1: Count steps instead of absolute time
- Simplification 2: Ignore lower order terms
 - Does the constant 3 matter as N gets large?
- Simplification 3: Ignore constant coefficients in the leading term (5*N) simplified to N

After the simplifications,

The number of steps grows linearly in N
Running Time = O(N) pronounced "Big-Oh of N"


What takes so long? Let's unravel the recursion...

The same subproblems get solved over and over again!

Orders of growth

- We are interested in how algorithm running time scales with input size
- Big-Oh notation allows us to express that by ignoring the details
- 20n hours v. n² microseconds:
 - which has a higher order of growth?
 - Which one is better?

Big-O notation lets us focus on the big picture

Recall our goals:

- Focus on the impact of the algorithm
- Focus on asymptotic behavior (running time as N gets large)

Count the number of steps in your algorithm: 3+ 5*N

Drop the constant additive term : 5*N

Drop the constant multiplicative term: N

Running time grows linearly with the input size

Express the count using **O-notation**

Time complexity = O(N)

Given the step counts for different algorithms, express the running time complexity using Big-O

- 1.10000000
- 2.3*N
- 3.6*N-2
- 4.15*N + 44
- 5. 50*N*logN
- $6. N^2$
- $7. N^2 6N + 9$
- 8. $3N^2+4*log(N)+1000$

For polynomials, use only leading term, ignore coefficients: linear, quadratic

Common sense rules of Big-O

- 1. Multiplicative constants can be omitted: 14n² becomes n².
- 2. n^a dominates n^b if a > b: for instance, n^2 dominates n.
- 3. Any exponential dominates any polynomial: 3ⁿ dominates n⁵ (it even dominates 2ⁿ).

What is the Big O of sumArray2

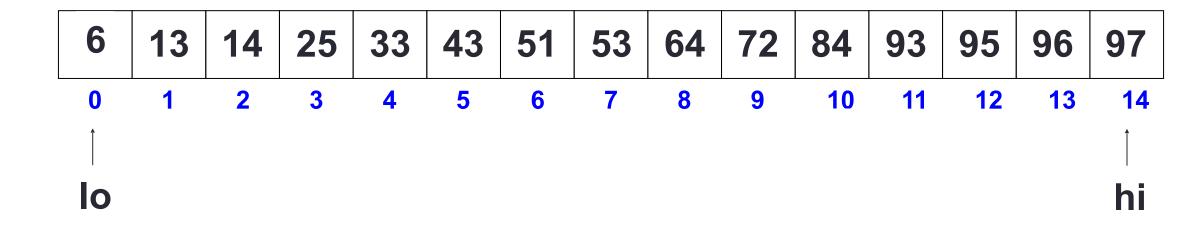
```
A. O(N^2) /* N is the length of the array*/
int sumArray2(int arr[], int N)

C. O(N/2) int result=0;
D. O(\log N) for(int i=0; i < N; i=i+2)

E. None of the array result+=arr[i];

return result;
}
```

What is the Big O of sumArray2


```
/* N is the length of the array*/
A. O(N<sup>2</sup>)

B. O(N)
C. O(N/2)
D. O(log N)
E. None of the array

/* N is the length of the array*/
int sumArray2(int arr[], int N)
{
    int result=0;
    for(int i=1; i < N; i=i*2)
        result+=arr[i];
    return result;
}</pre>
```

Operations on sorted arrays

- Min:
- Max:
- Median:
- Successor:
- Predecessor:
- Search:
- Insert :
- Delete:

Next time

Running time analysis of Binary Search Trees

References:

https://cseweb.ucsd.edu/classes/wi10/cse91/resources/algorithms.ppt http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf