RUNNING TIME ANALYSIS

Problem Solving with Computers-II

Quir 2 Today 6PM-9Pm
Labo 2 Due Wed
PAOI Released 5/12 (Wed)
Friday zegbook Activitios chapt 4.

C++

GitHub

1

Performance questions

- How efficient is a particular algorithm?
- CPU time usage (Running time complexity)
- Memory usage
- Disk usage
- Network usage
-Why does this matter?
- Computers are getting faster, so is this really important?
- Data sets are getting larger - does this impact running times?

How can we measure time efficiency of algorithms?
\#include <time>

- One way is to measure the absolute running time
-Pros? Cons?
- One datapoint, specific input
- Long time to run for inefficieal aldo.
- Depends on hardware

Which implementation is significantly faster?

$$
\begin{aligned}
& \text { (A. } \\
& \text { (B) } \text { function } F(n) \text { f } O(n) \\
& \text { function } F(n)\{ \\
& \text { if (} \mathrm{n}==1 \text {) return } 1 \\
& \text { if (} \mathrm{n}==2 \text {) return } 1 \\
& \text { Create an array fib[1..n] } \\
& \text { fib[1] = } 1 \\
& \text { fib[2] = } 1 \\
& \text { return } F(n-1)+F(n-2) \\
& \text { for } i=3 \text { to } n \text { : } \\
& T_{R}(n)=2^{0.69 n} \quad n-3 \sum_{\text {return fib[n] }}^{\mathrm{fib}[i]=f i b[i-1]+f i b[i-2] 4} \\
& =O\left(2^{n}\right) \\
& T(n)=3+(n-3) \times 4 \\
& \text { C. Both are almost equally fast } \\
& =4 n-9 \\
& \begin{array}{llllll}
F(n) & 1 & 1 & 2 & 3 & 5 \\
n & 1 & 2 & 3 & 4 & 5
\end{array} \\
& =\mathrm{O}_{2}(\mathrm{~N})
\end{aligned}
$$

A better question: How does the running time grow as a function of

 input size```
function F(n){
 if(n == 1) return 1
 if(n == 2) return 1
return F(n-1) + F(n-2)
}
```

```
function F(n) {
 Create an array fib[1..n]
 fib[1] = 1
 fib[2] = 1
 for i = 3 to n:
 fib[i] = fib[i-1] + fib[i-2]
 return fib[n]
}
```

The "right" question is: How does the running time grow?
E.g. How long does it take to compute $\mathrm{F}(200)$ ?
....let's say on....

## NEC Earth Simulator



Can perform up to 40 trillion operations per second.

## The running time of the recursive implementation

The Earth simulator needs 292 seconds for $F_{200}$.
Time in seconds
$2^{10}$
$2^{20}$
230
240
270

Interpretation
17 minutes 12 days 32 years cave paintings

The big bang!

```
function F(n) {
 if(n == 1) return 1
 if(n == 2) return 1
 return F(n-1) + F(n-2)
}
Let's try calculating \(\mathrm{F}_{200}\) using the iterative algorithm on my laptop.....
```


## Goals for measuring time efficiency

-Focus on the impact of the algorithm:
Simplify the analysis of running time by ignoring "details" which may be an artifact of the underlying implementation:

- E.g., $1000001 \approx 1000000$
- Similarly, $3 n^{2} \approx n^{2}$
- Focus on trends as input size increases (asymptotic behavior):

How does the running time of an algorithm increases with the size of the input in the limit (for large input sizes)

## Counting steps (instead of absolute time)

- Every computer can do some primitive operations in constant time:
- Data movement (assignment) $x=5$;
- Control statements (branch, function call, return) f():
- Arithmetic and logical operations $x>y \quad x+y$
- By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm
count of primitive operations. as afunction of inputsize $N$.

Running Time Complexity
Step 1: Count the promotion operations
Start by counting the primitive operations

```
/* N is the length of the array*/
int sumArray(int arr[], int N) Count
{
 - int result=0;
```



```
 return result;
}
 \frac{1}{2N+2}
 T (N) = 2 N + 2
```

Big-O notation $2 N+2$

| N | Steps $=5^{*} \mathrm{~N}+3$ |
| :--- | :--- |
| 1 | 8 |
| 10 | 53 |
| 1000 | 5003 |
| 100000 | 500003 |
| $10,000,00$ | 50000003 |

$$
T(N)=2 N+200000
$$

- Simplification 1: Count steps instead of absolute time
- Simplification 2: Ignore lower order terms
- Does the constant 3 matter as N gets large?
- Simplification 3: Ignore constant coefficients in the leading term $\left(5^{*} \mathrm{~N}\right)$ simplified to N

After the simplifications,
The number of steps grows linearly in N
Running Time $=\mathbf{O}(\mathbf{N})$ pronounced "Big-Oh of N "
Drop some terms that grow slowly company to other terms

What takes so long? Let's unravel the recursion...


The same subproblems get solved over and over again!
Orders of growth
Big - On Analysis

## $O\left(2^{n}\right)$ function <br> Big-O notation lets us focus on the big picture

Recall our goals:

- Focus on the impact of the algorithm
- Focus on asymptotic behavior (running time as $\mathbf{N}$ gets large)

Count the number of steps in your algorithm: 3+5*N Drop the constant additive term : 5*N Drop the constant multiplicative term : N Running time grows linearly with the input size Express the count using $\mathbf{O}$-notation Time complexity $=\mathrm{O}(\mathrm{N})$

Given the step counts for different algorithms, express the running time complexity using Big-O

```
1. 10,000,000
O(1) constant time
2. 3*N
3. 6*N-2
O(N)
4. 15*N + 44
5. 50*N*logN
O(N)
O(N\operatorname{log}N)
6. N2
O(N2)
7. N2-6N+9
O(N2
8. }3\mp@subsup{N}{}{2}+4*\operatorname{log}(N)+1000O(\mp@subsup{N}{}{2}
```

For polynomials, use only leading term, ignore coefficients: linear, quadratic

## Common sense rules of Big-O

1. Multiplicative constants can be omitted: $14 n^{2}$ becomes $n^{2}$.
2. $\mathrm{n}^{\mathrm{a}}$ dominates $\mathrm{n}^{\mathrm{b}}$ if $\mathrm{a}>\mathrm{b}$ : for instance, $\mathrm{n}^{2}$ dominates n .
3. Any exponential dominates any polynomial: $3^{n}$ dominates $n^{5}$ (it even dominates $2^{\mathrm{n}}$ ).

## What is the Big O of sumArray2

A. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
B. $\mathrm{O}(\mathrm{N})$
C. $\mathrm{O}(\mathrm{N} / 2)$
D. $\mathrm{O}(\log \mathrm{N})$
E. None of the array
/* N is the length of the array*/ int sumArray2(int arr[], int $N$ ) \{

1 int result =0;
$\frac{N}{2}$ for (int $i=0 ; i<N ; i=i+2$ )
3 result+=arr[i];
1 return result;
\}
$\begin{aligned} T(N) & =1+\left(\frac{3 N}{2}+1\right. \\ & =0(N) \text { drop constance and coefficicuts }\end{aligned}$

## What is the Big O of sumArray2

/* $N$ is the length of the array*/
A. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
B. $\mathrm{O}(\mathrm{N})$
C. $\mathrm{O}(\mathrm{N} / 2)$
D. $\mathrm{O}(\log \mathrm{N})$
E. None of the array
\}
\{
int sumArray2(int arr[], int $N$ )


This affects
the no. of times the loop execute's
steration \#

$$
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}
$$

$$
\begin{gathered}
2^{k-1} \geqslant N \\
(k-1) \geqslant \log _{2} N \\
k \geqslant \log _{2} N+1 \\
O\left(\log _{2} N\right)
\end{gathered}
$$

## Operations on sorted arrays

- Min :
- Max:
- Median:
- Successor:
- Predecessor:
- Search:
- Insert :
- Delete:

| 6 | 13 | 14 | 25 | 33 | 43 | 51 | 53 | 64 | 72 | 84 | 93 | 95 | 96 | 97 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| lo |  |  |  |  |  |  |  |  |  |  |  |  |  | hi |

## Next time

- Running time analysis of Binary Search Trees

References:
https://cseweb.ucsd.edu/classes/wi10/cse91/resources/algorithms.ppt http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

