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Performance questions

- How efficient is a particular algorithm?
- Memory usage
- Disk usage
- Network usage

- Why does this matter?

. Cor—r, so is this really important?

- Data sets are getting larger — does this impact running times?



How can we measure time efficiency of algorithms?
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* One way is to measure the absolute running time =
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Which implementation is significantly faster ?

A B, O(Mn)

function F(n) { function F(n) {
Create an array fib[l..n] 3

if(n == 1) return 1 ] _
if(n == 2) return 1 :ii{;} ; 1 i
return F(n-1) + F(n-2) for i = 3 to n:
} —*_ n-% fib[i] = fib[i-1] + fib[i-2]94
_ 0-69™M return~Eib[n]
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C. Both are almost equally fast
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A better question: How does the running time grow as a function of
input size

function F(n) {

function F(n) { Create an array fib[l..n]

if(n == 1) return 1 fib[1l] =1
if(n == 2) return 1 fib[2] =1
return F(n-1) + F(n-2) for i = 3 to n:
} fib[i] = fib[i-1] + fib[i-2]

return fib[n]

}

The “right” question is: How does the running time grow?
E.g. How long does it take to compute F(200)?
....let's say on....



NEC Earth Simulator

The Earth Simulator Genter

Can perform up to 40 trillion operations per second.



The running time of the recursive implementation
The Earth simulator need@econds for F,,.

Time in seconds Interpretation function F(n) {
10 A7 minutes if(n == 1) return 1
iﬂ .days if(n == 2) return 1
return F(n-1) + F(n-2)
20 182 years }
® — Let’s try calculating F,,
using the iterative
- ¢Thebig bang! =,  algorithm on my laptop.....



Goals for measuring time efficiency

- Focus on the impact of the algorithm:
Simplify the analysis of running time by ignoring “details” which may
be an artifact of the underlying implementation:

- E.g., 1000001 = 1000000

- Similarly, 3n2= n2

-Focus on trends as input size increases (asymptotic behavior):

How does the running time of an algorithm increases with the size of
the input in the limit (for large input sizes)



Counting steps (instead of absolute time)

- Every computer can do some primitive operations in constant time:
- Data movement (assignment) %= =~
- Control statements (branch, function call, return) £02
* Arithmetic and logical operations 2 x*d

- By inspecting the pseudo-code, we can count the number of primitive

operations executed by an algorithm
P y 9 . 3 ofunthon % inpu-scge N-
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Running Time Complexity Ghep V-

Start by counting the primitive operations

/* N is the length of the array*/
int sumArray(int arr[], int N) (punt
{ ) A
- int result=0;
for(int i=0; i < N; i++) NHMf]
- : : Fan
result+=arr([i]; 2»
return result; ___;&__
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Tty = an  Clinear)

Big-O notatlon;w v o o)~ /@ */‘ ( Quodtic )

3 - Simplification 1: Count steps instead of absolute
1 8 .

Simplification 2: Ignore lower order terms

10 53 - Does the constant 3 matter as N gets large?
1000 5003 - Simplification 3: Ignore constant coefficients in
100000 500003 the leading term (5*N) simplified to N

1 0,000,000 50000003 After the simplifications,

The number of steps grows linearly in N

Running Time = O(N) pronounced “Big-Oh of N”
T = EM x200000
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What takes so long? Let’s unravel the recursion..
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F(n-3) F(n-4) F(n-4) F(n-5) F(n-4) F(n-5) F(n-5) F(n-6)

The same subproblems get solved over and over again!
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Orders of growth 10

Big- O Aradyyvd 90

* We are interested in how 80
algorithm running time scales

with input size 2“@ jing ©
60

- Big-Oh notation allows us to L
express that by ignoring the o0
details 40
30

+ 20n hours v. n2 microseconds:

- which has a higher order of 20
growth? 10
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Big-Ootation lets us focus on the big picture

Recall our goals:
- Focus on the impact of the algorithm
- Focus on asymptotic behavior (running time as N gets large)

Count the number of steps in your algorithm: 3+ 5*N
Drop the constant additive term - 5*N

Drop the constant multiplicative term : N

Running time grows linearly with the input size
Express the count using O-notation

Time complexity = O(N)



Given the step counts for different algorithms, express the
running time complexity using Big-O

1. 10000000 O( L)  comsant ¥
2. 3*N O ( N

3. 6*N-2 O CN>)

4. 15*N + 44 S

5. 50*N*1ogN 8 (N Log ™ )

6. N2 OCNY)

7. N2-6N+9 OCN®)

8

 3N2+4*1og (N)+1000 OCN®)

For polynomials, use only leading term, ignore coefficients: linear, quadratic
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Common sense rules of Big-O

1. Multiplicative constants can be omitted: 14n2 becomes n2 .

2

2.n@ dominates nP if a > b: for instance, n© dominates n.

3. Any exponential dominates any polynomial: 3" dominates no (it even
dominates 2M).



What is the Big O of sumArray2

A O(N2) /* N is the length of the array*/
int sumArray2(int arr[], int N)

oM {

C. O(N/2) 4 int result=0;

D. O(log N) ? for(int i=0; i <__b_l;)

£. None of the array 3 result+=arr[i];
A return result;

}
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What is the Big O of sumArray2

/* N is the length of the array*/
A O(N2) int sumArray2(int arr[], int N)

{
B. O(N) int result=0;

C. O(N/2) for(int i=1; i < N;
(Iog N) result+=arr[i]; L
E. None of the array return result;
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Operations on sorted arrays

« Min :

- Max:

- Median:

- Successor:

* Predecessor:
- Search:

- Insert :

- Delete:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

lo hi



Next time

* Running time analysis of Binary Search Trees
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