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Performance questions
2

• How efficient is a particular algorithm? 
• CPU time usage   (Running time complexity) 
• Memory usage 
• Disk usage 
• Network usage 

  
• Why does this matter? 

• Computers are getting faster, so is this really important? 
• Data sets are getting larger – does this impact running times?



How can we measure time efficiency of algorithms?

• One way is to measure the absolute running time  

• Pros? Cons?

clock_t t; 
t = clock(); 

//Code under test  

t = clock() - t;



Which implementation is significantly faster ?

function F(n){ 
    if(n == 1) return 1 
    if(n == 2) return 1 
return F(n-1) + F(n-2) 
}

A.
function F(n){ 
 Create an array fib[1..n] 
 fib[1] = 1 
 fib[2] = 1 
 for i = 3 to n: 
    fib[i] = fib[i-1] + fib[i-2] 
 return fib[n] 
}

B. 

C. Both are almost equally fast



A better question: How does the running time grow as a function of 
input size

function F(n){ 
    if(n == 1) return 1 
    if(n == 2) return 1 
return F(n-1) + F(n-2) 
}

function F(n){ 
 Create an array fib[1..n] 
 fib[1] = 1 
 fib[2] = 1 
 for i = 3 to n: 
    fib[i] = fib[i-1] + fib[i-2] 
 return fib[n] 
}

The “right” question is: How does the running time grow? 
E.g. How long does it take to compute F(200)? 
….let’s say on….



NEC Earth Simulator

Can perform up to 40 trillion operations per second.



The running time of the recursive implementation
The Earth simulator needs 292 seconds for F200. 

Time in seconds  Interpretation 
 210      17 minutes 

 220    12 days 

 230    32 years 

 240    cave paintings 

  270    The big bang! 

function F(n){ 
    if(n == 1) return 1 
    if(n == 2) return 1 
return F(n-1) + F(n-2) 
}

Let’s try calculating F200 
using the iterative 
algorithm on my laptop…..



Goals for measuring time efficiency
• Subgoal 1: Focus on the impact of the algorithm:  
Simplify the analysis of running time by ignoring “details” which may 
be an artifact of the underlying implementation



Goals for measuring time efficiency
• Subgoal 1: Focus on the impact of the algorithm:  
Simplify the analysis of running time by ignoring “details” which may 
be an artifact of the underlying implementation 

• Subgoal 2: Focus on trends as input size increases 
(asymptotic behavior):  

How does the running time of an algorithm increases with the size of 
the input in the limit (for large input sizes)



Counting steps (instead of absolute time)
• Every computer can do some primitive operations in constant time: 

• Data movement (assignment) 

• Control statements (branch, function call, return) 

• Arithmetic and logical operations 

• By inspecting the pseudo-code, we can count the number of primitive 
operations executed by an algorithm



Counting the number of primitive steps

/* n is the length of the array*/ 
int sumArray(int arr[], int n) 
{   
       int result=0;   
       for(int i=0; i < n; i++)     
              result+=arr[i];   
       return result; 
}



Orders of growth
An order of growth is a set of functions 
whose asymptotic growth behavior is 
considered equivalent. 
For example, 2n, 100n and n+1 belong to 
the same order of growth



Order of growth

Which of the following functions has a higher order of growth? 

A. 50n 

B. 2n2



Big-O notation
• Big-O notation provides an upper bound on the order of growth of a function 



Definition of Big-O
• f(n) and g(n) map positive integer inputs to positive reals. 

We say f = O(g) if there is a constant c > 0  and k>0 such that
 f(n) ≤ c · g(n) for all n >= k.

f = O(g) 
means that “f grows no faster than g”



What is the Big-O running time of sumArray?
/* n is the length of the array*/ 
int sumArray(int arr[], int n) 
{   
       int result=0;   
       for(int i=0; i < n; i++)     
              result+=arr[i];   
       return result; 
}



Expressing the running time of sumArray using Big-O notation

N Steps = 4*n +3
1 7
10 43
1000 4003
100000 400003
10000000 40000003

• Simplification 1: Count steps instead of absolute 
time 

• Simplification 2: Ignore lower order terms 
• Does the constant 3 matter as n gets large?  

• Simplification 3: Ignore constant coefficients in 
the leading term (4n) simplified to n 

After the simplifications,  

The number of steps grows linearly in n 
Running Time = O(n) pronounced “Big-Oh of n”



Big-O notation lets us focus on the big picture
Recall our goals: 
• Focus on the impact of the algorithm 

• Focus on asymptotic behavior (as n gets large) 



Given the step counts for different algorithms, express the 
running time complexity using Big-O

1. 10000000  
2. 3*n      
3. 6*n-2      
4. 15*n + 44 
5. 50*n*log(n) 
6. n2     
7. n2-6n+9   
8. 3n2+4*log(n)+1000

For polynomials, use only leading term, ignore coefficients: linear, quadratic



Common sense rules of Big-O
1. Multiplicative constants can be omitted: 14n2 becomes n2 .  

2. na dominates nb if a > b: for instance, n2 dominates n.  

3. Any exponential dominates any polynomial: 3n dominates n5 (it even 
dominates 2n ).



Big-O analysis

function F(n){ 
 Create an array fib[1..n] 
 fib[1] = 1 
 fib[2] = 1 
 for i = 3 to n: 
    fib[i] = fib[i-1] + fib[i-2] 
 return fib[n] 
}



Big-O analysis

function F(n){ 
    if(n == 1) return 1 
    if(n == 2) return 1 
return F(n-1) + F(n-2) 
}



What is the Big O running time of sumArray2

/* n is the length of the array*/ 
int sumArray2(int arr[], int n) 
{   
       int result=0;   
       for(int i=0; i < n; i=i+2)     
              result+=arr[i];   
       return result; 
}

A. O(n2) 

B. O(n) 
C. O(n/2) 
D. O(log n) 

E. None of the array



What is the Big O of sumArray2
/* N is the length of the array*/ 
int sumArray2(int arr[], int n) 
{   
       int result=0;   
       for(int i=1; i < n; i=i*2)     
              result+=arr[i];   
       return result; 
}

A. O(n2) 

B. O(n) 
C. O(n/2) 
D. O(log n) 

E. None of the array



Next time
• Running time analysis : best case and worst case 
• Running time analysis of Binary Search Trees
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