
RUNNING TIME ANALYSIS - PART 2 

Problem Solving with Computers-II



Definition of Big-O
f(n) and g(n) map positive integer inputs to positive reals. 

We say f = O(g) if there is a constant c > 0  and k>0 such that
 f(n) ≤ c · g(n) for all n >= k.

f = O(g) 
means that “f grows no faster than g”



What is the Big O running time of sumArray2

/* n is the length of the array*/ 
int sumArray2(int arr[], int n) 
{   
       int result = 0;   
       for(int i=0; i < n; i=i+2)     
              result+=arr[i];   
       return result; 
}

A. O(n2) 

B. O(n) 
C. O(n/2) 
D. O(log n) 

E. None of the array



What is the Big O of sumArray3
/* N is the length of the array*/ 
int sumArray3(int arr[], int n) 
{   
       int result = 0;   
       for(int i= 1; i < n; i=i*2)     
              result+=arr[i];   
       return result; 
}

A. O(n2) 

B. O(n) 
C. O(n/2) 
D. O(log n) 

E. None of the array



Given the step counts for different algorithms, express the 
running time complexity using Big-O

1. 10000000  
2. 3*n      
3. 6*n-2      
4. 15*n + 44 
5. 50*n*log(n) 
6. n2     
7. n2-6n+9   
8. 3n2+4*log(n)+1000

For polynomials, use only leading term, ignore coefficients: linear, quadratic



Common sense rules of Big-O
1. Multiplicative constants can be omitted: 14n2 becomes n2 .  

2. na dominates nb if a > b: for instance, n2 dominates n.  

3. Any exponential dominates any polynomial: 3n dominates n5 (it even dominates 2n ).



Best case and worst case running times

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

Operations on sorted arrays of size n 
• Min :  
• Max:  
• Median:  
• Successor:  
• Predecessor:  
• Search: 
• Insert :  
• Delete:



Worst case analysis of binary search
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bool binarySearch(int arr[], int element, int n){  
//Precondition: input array arr is sorted in ascending order 
  int begin = 0; 
  int end = n-1; 
  int mid; 
  while (begin <=  end){ 
    mid = (end + begin)/2; 
    if(arr[mid]==element){ 
      return true; 
    }else if (arr[mid]< element){ 
      begin = mid + 1;     
    }else{ 
      end = mid - 1; 
     
    }    
  } 
  return false; 
}
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BSTs of different heights are possible with the same set of keys 
Examples for keys: 12, 32, 41, 42, 45

• Path – a sequence of nodes and edges connecting a node with another node. 
• A path starts from a node and ends at another node or a leaf 
• Height of node – The height of a node is the number of edges on the longest 

downward path between that node and a leaf.
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Worst case Big-O of search, insert, min, max

Given a BST of height H with N nodes, 
what is the worst case complexity of 
searching for a key? 
A. O(1) 
B. O(log H) 
C. O(H) 
D. O(H*log H) 
E. O(N)

42

32

12

45

41 50
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Worst case Big-O of predecessor / successor

Given a BST of height H and N nodes, 
what is the worst case complexity of finding 
the predecessor or successor key? 
A. O(1) 
B. O(log H) 
C. O(H) 
D. O(H*log H) 
E. O(N)

42

32

12

45

41 50
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Worst case Big-O of delete

Given a BST of height H and N 
nodes, what is the worst case 
complexity of deleting a node? 
A. O(1) 
B. O(log H) 
C. O(H) 
D. O(H*log H) 
E. O(N)

42

32

12

45

41 50
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Big O of traversals

In Order: 
Pre Order: 
Post Order:

42

32

12

45

41 50



Types of BSTs
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Balanced BST: 

Full Binary Tree: Every node other than the 
leaves has two children. 

Complete Binary Tree: Every level, except 
possibly the last, is completely filled, and all 
nodes are as far left as possible 

42

32

12

45

41 5043

Level 0

Level 1

Level 2



Relating H (height) and N (#nodes)
Level 0

Level 1

Level 2

……
What is the height (exactly) of a full binary tree in terms of N?
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Balanced trees
• Balanced trees by definition have a height of O(log N) 
• A completely filled tree is one example of a balanced tree 
• Other Balanced BSTs include AVL trees, red black trees and so on 
• Visualize operations on an AVL tree: https://visualgo.net/bn/bst

https://visualgo.net/bn/bst

