RUNNING TIME ANALYSIS - PART 2

Problem Solving with Computers-II
include ciostace stdi
using
int matut<"Hol couturn 0 ;

Definition of Big-O

$f(n)$ and $g(n)$ map positive integer inputs to positive reals.
We say $\mathrm{f}=\mathrm{O}(\mathrm{g})$ if there is a constant $\mathrm{c}>0$ and $\mathrm{k}>0$ such that $\mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$ for all $\mathrm{n}>=\mathrm{k}$.
$\mathrm{f}=\mathrm{O}(\mathrm{g})$
means that " f grows no faster than g "

What is the Big O running time of sumArray2

A. $O\left(n^{2}\right)$
B. $\mathrm{O}(\mathrm{n})$
C. $\mathrm{O}(\mathrm{n} / 2)$
D. $\mathrm{O}(\log n)$
E. None of the array
/* n is the length of the array*/ int sumArray2(int arr[], int n)
\{

```
int result = 0;
for(int i=0; i < n; i=i+2)
                                    result+=arr[i];
return result;
```

\}

What is the Big O of sumArray3

A. $O\left(n^{2}\right)$
B. $\mathrm{O}(\mathrm{n})$
C. $\mathrm{O}(\mathrm{n} / 2)$
D. $\mathrm{O}(\log n)$
E. None of the array
/* N is the length of the array*/ int sumArray3(int arr[], int n) \{
int result $=0$;
for (int $i=1 ; i<n ; i=i * 2)$ result+=arr[i];
return result;

Given the step counts for different algorithms, express the running time complexity using Big-O

1. 10000000
2. $3 * n$
3. $6 * n-2$
4. 15 *n $_{\mathrm{n}}+44$
5. $50 * n * \log (n)$
6. n^{2}
7. $n^{2}-6 n+9$
8. $3 n^{2}+4 * \log (n)+1000$

For polynomials, use only leading term, ignore coefficients: linear, quadratic

Common sense rules of Big-O

1. Multiplicative constants can be omitted: $14 n^{2}$ becomes n^{2}.
2. n^{a} dominates n^{b} if $\mathrm{a}>\mathrm{b}$: for instance, n^{2} dominates n .
3. Any exponential dominates any polynomial: 3^{n} dominates n^{5} (it even dominates 2^{n}).

Best case and worst case running times

Operations on sorted arrays of size n

- Min :
- Max:
- Median:
- Successor:
- Predecessor:
- Search:
- Insert :
- Delete:

6	13	14	25	33	43	51	53	64	72	84	93	95	96	97
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Worst case analysis of binary search

```
bool binarySearch(int arr[], int element, int n){
//Precondition: input array arr is sorted in ascending order
    int begin = 0;
    int end = n-1;
    int mid;
    while (begin <= end){
        mid = (end + begin)/2;
        if(arr[mid]==element){
            return true;
        }else if (arr[mid]< element){
            begin = mid + 1;
        }else{
            end = mid - 1;
        }
    }
    return false;
}
```

- Path - a sequence of nodes and edges connecting a node with another node.
- A path starts from a node and ends at another node or a leaf
- Height of node - The height of a node is the number of edges on the longest downward path between that node and a leaf.

BSTs of different heights are possible with the same set of keys Examples for keys: 12, 32, 41, 42, 45

Worst case Big-O of search, insert, min, max

Given a BST of height H with N nodes, what is the worst case complexity of searching for a key?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\log \mathrm{H})$
C. $\mathrm{O}(\mathrm{H})$
D. $\mathrm{O}\left(\mathrm{H}^{*} \log \mathrm{H}\right)$
E. O(N)

Worst case Big-O of predecessor / successor

Given a BST of height H and N nodes, what is the worst case complexity of finding the predecessor or successor key?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\log \mathrm{H})$
C. $\mathrm{O}(\mathrm{H})$
D. $\mathrm{O}\left(\mathrm{H}^{\star} \log \mathrm{H}\right)$
E. O(N)

Worst case Big-O of delete

Given a BST of height H and N nodes, what is the worst case complexity of deleting a node?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\log \mathrm{H})$
C. $\mathrm{O}(\mathrm{H})$
D. $\mathrm{O}\left(\mathrm{H}^{*} \log \mathrm{H}\right)$
E. O(N)

Big O of traversals

Types of BSTs

Balanced BST:

Full Binary Tree: Every node other than the leaves has two children.

Complete Binary Tree: Every level, except possibly the last, is completely filled, and all nodes are as far left as possible

Relating H (height) and N (\#nodes)

What is the height (exactly) of a full binary tree in terms of N ?

Balanced trees

- Balanced trees by definition have a height of $\mathrm{O}(\log \mathrm{N})$
- A completely filled tree is one example of a balanced tree
- Other Balanced BSTs include AVL trees, red black trees and so on
- Visualize operations on an AVL tree: https://visualgo.net/bn/bst

