
RUNNING TIME ANALYSIS - PART 2

Problem Solving with Computers-II

Definition of Big-O
f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there is a constant c > 0 and k>0 such that
 f(n) ≤ c · g(n) for all n >= k.

f = O(g)
means that “f grows no faster than g”

What is the Big O running time of sumArray2

/* n is the length of the array*/
int sumArray2(int arr[], int n)
{
 int result = 0;
 for(int i=0; i < n; i=i+2)
 result+=arr[i];
 return result;
}

A. O(n2)

B. O(n)
C. O(n/2)
D. O(log n)

E. None of the array

What is the Big O of sumArray3
/* N is the length of the array*/
int sumArray3(int arr[], int n)
{
 int result = 0;
 for(int i= 1; i < n; i=i*2)
 result+=arr[i];
 return result;
}

A. O(n2)

B. O(n)
C. O(n/2)
D. O(log n)

E. None of the array

Given the step counts for different algorithms, express the
running time complexity using Big-O

1. 10000000
2. 3*n
3. 6*n-2
4. 15*n + 44
5. 50*n*log(n)
6. n2
7. n2-6n+9
8. 3n2+4*log(n)+1000

For polynomials, use only leading term, ignore coefficients: linear, quadratic

Common sense rules of Big-O
1. Multiplicative constants can be omitted: 14n2 becomes n2 .

2. na dominates nb if a > b: for instance, n2 dominates n.

3. Any exponential dominates any polynomial: 3n dominates n5 (it even dominates 2n).

Best case and worst case running times

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

Operations on sorted arrays of size n
• Min :
• Max:
• Median:
• Successor:
• Predecessor:
• Search:
• Insert :
• Delete:

Worst case analysis of binary search
8

bool binarySearch(int arr[], int element, int n){
//Precondition: input array arr is sorted in ascending order
 int begin = 0;
 int end = n-1;
 int mid;
 while (begin <= end){
 mid = (end + begin)/2;
 if(arr[mid]==element){
 return true;
 }else if (arr[mid]< element){
 begin = mid + 1;
 }else{
 end = mid - 1;

 }
 }
 return false;
}

9

BSTs of different heights are possible with the same set of keys
Examples for keys: 12, 32, 41, 42, 45

• Path – a sequence of nodes and edges connecting a node with another node.
• A path starts from a node and ends at another node or a leaf
• Height of node – The height of a node is the number of edges on the longest

downward path between that node and a leaf.

10

Worst case Big-O of search, insert, min, max

Given a BST of height H with N nodes,
what is the worst case complexity of
searching for a key?
A. O(1)
B. O(log H)
C. O(H)
D. O(H*log H)
E. O(N)

42

32

12

45

41 50

11

Worst case Big-O of predecessor / successor

Given a BST of height H and N nodes,
what is the worst case complexity of finding
the predecessor or successor key?
A. O(1)
B. O(log H)
C. O(H)
D. O(H*log H)
E. O(N)

42

32

12

45

41 50

12

Worst case Big-O of delete

Given a BST of height H and N
nodes, what is the worst case
complexity of deleting a node?
A. O(1)
B. O(log H)
C. O(H)
D. O(H*log H)
E. O(N)

42

32

12

45

41 50

13

Big O of traversals

In Order:
Pre Order:
Post Order:

42

32

12

45

41 50

Types of BSTs

14

Balanced BST:

Full Binary Tree: Every node other than the
leaves has two children.

Complete Binary Tree: Every level, except
possibly the last, is completely filled, and all
nodes are as far left as possible

42

32

12

45

41 5043

Level 0

Level 1

Level 2

Relating H (height) and N (#nodes)
Level 0

Level 1

Level 2

……
What is the height (exactly) of a full binary tree in terms of N?

15

Balanced trees
• Balanced trees by definition have a height of O(log N)
• A completely filled tree is one example of a balanced tree
• Other Balanced BSTs include AVL trees, red black trees and so on
• Visualize operations on an AVL tree: https://visualgo.net/bn/bst

https://visualgo.net/bn/bst

