RUNNING TIME ANALYSIS - PART 2

Problem Solving with Computers-|l C-l--'-
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=
Definition of Big-O

f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there is a constant ¢ > 0 and k>0 such that
f(n) <c - g(n) for all n >=k.
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f = O(g) 80
means that “f grows no faster than g” ol
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e
What is the Big O running time of sumArray2

/* n is the length of the array*/

A O(nz) int sumArray2(int arr[], int n)
(5)om) { 5
C. O(n/2) int result = 0; |

D. Q(ng'n) for (int i=0;@; i=i+2b

1t+= i];
E. None of the array ceturn f::ﬁlt arr[i];) -
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What is the Big O of sumArray3

/* N is the length of the array*/
A O(nZ) int sumArray3(int arr[], int n)
2. O(n) {
O(n/2)
O(Iog n)
E. None of the array
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Given the step counts for different algorithms, express the
running time complexity using Big-O

10000000 O (1D

1

2. 3*n o)

3. 6*n-2 O (m)

4. 15%n + 44 @C”‘ﬂu N

5. 50%n*log(n) O (™90

6. n2 C)C*‘l)

7. n2-6n+9 Ol >( 1)
— vt ) D "N

8. 3_?j+4*log’£n)+1000 :

For polynomials, use only leading term, ignore coefficients: linear, quadratic
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Common sense rules of Big-O

1. Multiplicative constants can be omitted: 14n2 becomes n2 .
2

—

2.n@ dominates nb if a> b: for instance/ n dominates n.

—

3. Any exponential dominates any polynomial: 3" dominates n (it even dominates 2" ).
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Operations on sorted arrays of size n 0(,\)

*Min : oOCH S

- Max: ol OZ"\ S

- Median: O(i‘ D g 3%

- Successor: @) C‘\? 00D

- Predecessor: ) o Ol

: Searchivttj} nave seada o O (V) (LoD

- Insert s Diracq Seardn: oL o (Lo

. Deletea: Tngert™ o\ D o)
peleke ©CL\D oln)
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Worst case analysis of binary search

bool b1narySearch(1nt arr[], int element, int n){
input array arr 1is sorted in ascending order

int begin = 0; .
int eng = n-1; O (‘> ) ferod o ena- begin
int mid; A N
' egin <= end){ -\
~mid = (end + begin)/2; — 2 "=
if(arr[mid]==element){— 2
return true;  loud 2 -\
telse if (arr[mid]l< element){ fq
begin = mid + 1;
telse{
end = mid - 1; ~ e
) 9

return false;
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@ » Path — a sequence of nodes and edges connecting a node with another node.
<=5 + Apath starts from a node and ends at another node or a leaf

eight|of node — The height of a node is the number of edges on the longest
1 ~downward path between that node and a leaf.
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BSTs of different heights with the same set of keys
Examples for keys: )12, 32, 41,42, 45







Worst case Big-O of search, insert, min, max

Given a BST of height H with N nodes,
what is the worst case compIeX|ty of
searching for a key?

A O(1) Resr cone: 01D
B. O(log H) Lok Cae OCH)
(C0H)

D. O(H*log H)

£ O(N)



Worst case Big-O of predecessor / successor

Given a BST of height H and N nodes,
what is the worst case complexity of finding
the predecessor or successor key?

A O(1)

Core OCJ\
5. O(log H) e ecus
(H) ' o0t
* USorTH cool -
D. O(H*log H) @eceﬂ”"('ul)
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Worst case Big-O of delete

@ Given a BST of height H and N
nodes, what is the worst case

@ @ complexity of deleting a node?
A. O(1)
e Q @ B. O(log H)
O(H)

D. O(H*log H)
E. O(N)




Big O of traversals

@ In Order: O™
@ @ Pre Order: o(™m")
Post Order: o (™)
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Types of BSTs
Level 0 e Balanced BST:
Level 1 a e
Full Binary Tree: Every node other than the

leaves has two children.
Level 2 @

Complete Binary Tree: Every level, except
possibly the last, is completely filled, and all
nodes are as far left as possible
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Relating H (height) and N (#nodes)

Level O

Level 1

Level 2

What is the height (exactly) of a full binary tree in terms of N?



Balanced trees

- Balanced trees by definition have a height of O(log N)

- A completely filled tree is one example of a balanced tree

- Other Balanced BSTs include AVL trees, red black trees and so on
- Visualize operations on an AVL tree: https://visualgo.net/bn/bst



https://visualgo.net/bn/bst

