RUNNING TIME ANALYSIS - PART 2

Problem Solving with Computers-|l C-l--'-

{. §eod

0 i\ { TN
f(;?cmx\m
E‘N\‘NV\?

Tne

v

C- 9D 7 T(r™) fea) 2k
T () :O(ﬁr,‘\
) = n v -
T
1 M 7/ /2
g E
L5 §
2

=
Definition of Big-O

f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there is a constant ¢ > 0 and k>0 such that
f(n) <c - g(n) for all n >=k.

100

f = O(g) 80
means that “f grows no faster than g” ol

—

) 2 O@ln%

30} 2n+20

e
What is the Big O running time of sumArray2

/* n is the length of the array*/

A O(nz) int sumArray2(int arr[], int n)
(5)om) { 5
C. O(n/2) int result = 0; |

D. Q(ng'n) for (int i=0;@; i=i+2b

1t+= i];
E. None of the array ceturn f::ﬁlt arr[i];) -
14

6 + L

}

T = 17V« ‘ﬂ"o;(ﬁm’\fu. Lopp TUNS
=7 9% 1.6 - On)

>

What is the Big O of sumArray3

/* N is the length of the array*/
A O(nZ) int sumArray3(int arr[], int n)
2. O(n) {
O(n/2)
O(Iog n)
E. None of the array

Ticsoken HF

A 1
b A
2 Y
) 3
Loo]: exts
u-
a 7 m
by 7 Lesy”
b 7 g0 T

Given the step counts for different algorithms, express the
running time complexity using Big-O

10000000 O (1D

1

2. 3*n o)

3. 6*n-2 O (m)

4. 15%n + 44 @C”‘ﬂu N

5. 50%n*log(n) O (™90

6. n2 C)C*‘l)

7. n2-6n+9 Ol >(1)
— vt) D "N

8. 3_?j+4*log’£n)+1000 :

For polynomials, use only leading term, ignore coefficients: linear, quadratic

=
Common sense rules of Big-O

1. Multiplicative constants can be omitted: 14n2 becomes n2 .
2

—

2.n@ dominates nb if a> b: for instance/ n dominates n.

—

3. Any exponential dominates any polynomial: 3" dominates n (it even dominates 2").

3>m b,
\“);3,\.7\
. 0(3")

%est casg and ;f:orst case {runnlng times
T paces porsh <ot

Operations on sorted arrays of size n 0(,\)

*Min : oOCH S

- Max: ol OZ"\ S

- Median: O(i‘ D g 3%

- Successor: @) C‘\? 00D

- Predecessor:) o Ol

: Searchivttj} nave seada o O (V) (LoD

- Insert s Diracq Seardn: oL o (Lo

. Deletea: Tngert™ o\ D o)
peleke ©CL\D oln)

6 13|14 |25 |33 |43 |51 /53] 64|72 |84 |93 |95 96 sﬂ

Worst case analysis of binary search

bool b1narySearch(1nt arr[], int element, int n){
input array arr 1is sorted in ascending order

int begin = 0; .
int eng = n-1; O (‘>) ferod o ena- begin
int mid; A N
' egin <= end){ -\
~mid = (end + begin)/2; — 2 "=
if(arr[mid]==element){— 2
return true; loud 2 -\
telse if (arr[mid]l< element){ fq
begin = mid + 1;
telse{
end = mid - 1; ~ e
) 9

return false;

$}‘DP

[end- beﬁ”‘) <

LY

@ » Path — a sequence of nodes and edges connecting a node with another node.
<=5 + Apath starts from a node and ends at another node or a leaf

eight|of node — The height of a node is the number of edges on the longest
1 ~downward path between that node and a leaf.

1.
oz ® _
HeggWr =
H%M "4 L‘

Reigt T fou oor =)f("*s‘“""% e

BSTs of different heights with the same set of keys
Examples for keys:)12, 32, 41,42, 45

Worst case Big-O of search, insert, min, max

Given a BST of height H with N nodes,
what is the worst case compIeX|ty of
searching for a key?

A O(1) Resr cone: 01D
B. O(log H) Lok Cae OCH)
(C0H)

D. O(H*log H)

£ O(N)

Worst case Big-O of predecessor / successor

Given a BST of height H and N nodes,
what is the worst case complexity of finding
the predecessor or successor key?

A O(1)

Core OCJ\
5. O(log H) e ecus
(H) ' o0t
* USorTH cool -
D. O(H*log H) @eceﬂ”"('ul)

/d /\ = O(N) 8 P e (122

Worst case Big-O of delete

@ Given a BST of height H and N
nodes, what is the worst case

@ @ complexity of deleting a node?
A. O(1)
e Q @ B. O(log H)
O(H)

D. O(H*log H)
E. O(N)

Big O of traversals

@ In Order: O™
@ @ Pre Order: o(™m")
Post Order: o (™)

!

Types of BSTs
Level 0 e Balanced BST:
Level 1 a e
Full Binary Tree: Every node other than the

leaves has two children.
Level 2 @

Complete Binary Tree: Every level, except
possibly the last, is completely filled, and all
nodes are as far left as possible

5
Relating H (height) and N (#nodes)

Level O

Level 1

Level 2

What is the height (exactly) of a full binary tree in terms of N?

Balanced trees

- Balanced trees by definition have a height of O(log N)

- A completely filled tree is one example of a balanced tree

- Other Balanced BSTs include AVL trees, red black trees and so on
- Visualize operations on an AVL tree: https://visualgo.net/bn/bst

https://visualgo.net/bn/bst

