HEAPS

Probl
em Solvi
lving with Com
puters
-1l

Ct++

“.f\cl £109% s
gsind o=) .
int mall Ot
cout<<"%03“
retvr® =
o |
N

L
Heaps

» Clarification
* heap, the data structure is not related to heap, the region of memory

« What are the operations supported?

« What are the running times?

L
Heaps as binary trees

 Rooted binary tree that is as complete as possible
* In a min-Heap, each node satisfies the following heap property:
key(x)<= key(children of x)

Min Heap with 9 nodes

Where is the minimum element?

Heaps as binary trees

 Rooted binary tree that is as complete as possible
* In a max-Heap, each node satisfies the following heap property:
key(x)>= key(children of x)

G Max Heap with 9 nodes

° Where is the maximum element?

Structure: Complete binary tree

A heap is a complete binary tree: Each level is as full as possible.
Nodes on the bottom level are placed as far left as possible

L
ldentifying heaps

Starting with the following min-Heap which of the following operations
will result in something that is NOT a min Heap

A. Swap the nodes 40 and 32 Q 0 @

B. Swap the nodes 32 and 43

C. Swap the nodes 43 and 40

D. Insert 50 as the left child of 45 Q @ e G
E. C&D

Insert 50 into a min-heap

* Insert key(x) in the first open slot at the last level of tree (going from left to right)

* If the heap property is not violated - Done
e Else: while(key(parent(x))>key(x)) swap the key(x) with key(parent(x))

Insert 50, then 35, then 8

oY

L
Delete min

* Replace the root with the rightmost node at the last level

e “Bubble down”- swap node with child with the smallest key value until the
heap property is restored

e:@: -

L
Under the hood of heaps

* An efficient way of implementing heaps is using vectors

 Although we think of heaps as trees, the entire tree can be efficiently
represented as a vector!!

L
Implementing heaps using an array or vector

Value

Index O 1 2 3 4 5 6 7 8 9

e @ e e Using vector as the internal data structure
/ of the heap has some advantages:
 More space efficient than trees

e Easier to insert nodes into the heap

Finding the “parent” of a "node” in the vector representation

° For a key at index i, index of the parent is

0 e (i-1)/2
ONONORO

Value 6 10 12 40 32 43 47 45 41
Index O 1 2 3 4 5 6 7 8

Insert into a heap

* Insert key(x) in the first open slot at the last level of tree (going from left to right)
* If the heap property is not violated - Done
e Else....

Insert the elements {12, 41, 47, 45, 32} in a min-Heap using the vector
representation of the heap

L
Insert 50, then 35

o For a node at index i, index of the parent is

0 e (i-1)/2
@ @ ORO

Value 6 10 12 40 32 43 47 45 41
Index 0 1 2 3 4 5 6 7 8

Traversing down the tree

Value 6 10 12 40 32 43 47 45 41
Index O 1 2 3 4 5 6 7 8

G For a node at index i, what is the index of
the left and right children?
@ @ A. (2%, 2*i+1)
B. (2*i+1, 2*i+2)
@ @ @ G C. (log(i), log(i)+1)
@ Q D. None of the above

L
Delete min

* Replace the root with the rightmost node at the last level

 “Bubble down”- swap node with one of the children until the heap
property is restored

e:@: -

L
Delete min (pop)

Value 6 10 12 40 32 43 47 45 41 50 35
Index O 1 2 3 4 5 6 7 8 9 10

What is the resulting vector after doing a pop()?

