
HEAPS
Problem Solving with Computers-II



Heaps 
• Clarification  

•  heap, the data structure is not related to heap, the region of memory 
• What are the operations supported? 
• What are the running times?



Heaps as binary trees
• Rooted binary tree that is as complete as possible 
• In a min-Heap, each node satisfies the following heap property: 

                   key(x)<= key(children of x)
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Where is the minimum element?



Heaps as binary trees
• Rooted binary tree that is as complete as possible 
• In a max-Heap, each node satisfies the following heap property: 

                   key(x)>= key(children of x)
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Structure: Complete binary tree
A heap is a complete binary tree: Each level is as full as possible. 
Nodes on the bottom level are placed as far left as possible
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Identifying heaps
Starting with the following min-Heap which of the following operations 
will result in something that is NOT a min Heap
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A. Swap the nodes 40 and 32 
B. Swap the nodes 32 and 43 
C. Swap the nodes 43 and 40 
D. Insert 50 as the left child of 45 
E. C&D



Insert 50 into a min-heap
• Insert key(x) in the first open slot at the last level of tree (going from left to right) 
• If the heap property is not violated - Done 
• Else: while(key(parent(x))>key(x)) swap the key(x) with key(parent(x))
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Insert 50, then 35, then 8
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Delete min
• Replace the root with the rightmost node at the last level 
• “Bubble down”- swap node with child with the smallest key value until the 

heap property is restored
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Under the hood of heaps
• An efficient way of implementing heaps is using vectors 
• Although we think of heaps as trees, the entire tree can be efficiently 

represented as a vector!!



Implementing heaps using an array or vector
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Value

Index 0 1 2 3 4 5 6 7 8 9

Using vector as the internal data structure 
of the heap has some advantages: 

• More space efficient than trees 
• Easier to insert nodes into the heap 
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For a key at index i, index of the parent is  
(i-1)/2

Value 6 10 12 40 32 43 47 45 41

Index 0 1 2 3 4 5 6 7 8

Finding the “parent” of a “node” in the vector representation



Insert into a heap
• Insert key(x) in the first open slot at the last level of tree (going from left to right) 
• If the heap property is not violated - Done 
• Else….

Insert the elements {12, 41, 47, 45, 32} in a min-Heap using the vector 
representation of the heap
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Value 6 10 12 40 32 43 47 45 41

Index 0 1 2 3 4 5 6 7 8

Insert 50, then 35
For a node at index i, index of the parent is  
(i-1)/2 



Traversing down the tree
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For a node at index i, what is the index of 
the left and right children? 

A. (2*i, 2*i+1) 
B. (2*i+1, 2*i+2) 
C. (log(i), log(i)+1) 
D. None of the above

Value 6 10 12 40 32 43 47 45 41

Index 0 1 2 3 4 5 6 7 8



Delete min
• Replace the root with the rightmost node at the last level 
• “Bubble down”- swap node with one of the children until the heap 

property is restored
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Delete min (pop)

Value 6 10 12 40 32 43 47 45 41 50 35

Index 0 1 2 3 4 5 6 7 8 9 10

What is the resulting vector after doing a pop()? 


