
HEAPS
Problem Solving with Computers-II

Heaps
• Clarification

• heap, the data structure is not related to heap, the region of memory
• What are the operations supported?
• What are the running times?

Heaps as binary trees
• Rooted binary tree that is as complete as possible
• In a min-Heap, each node satisfies the following heap property:

 key(x)<= key(children of x)

6

10

40

12

32 4743

Min Heap with 9 nodes

45 41

Where is the minimum element?

Heaps as binary trees
• Rooted binary tree that is as complete as possible
• In a max-Heap, each node satisfies the following heap property:

 key(x)>= key(children of x)

47

41

12

45

32 4043

Max Heap with 9 nodes

6 10 Where is the maximum element?

Structure: Complete binary tree
A heap is a complete binary tree: Each level is as full as possible.
Nodes on the bottom level are placed as far left as possible

6

10

40

12

32 4743

45 41

Identifying heaps
Starting with the following min-Heap which of the following operations
will result in something that is NOT a min Heap

6

10

40

12

32 4743

45 41

A. Swap the nodes 40 and 32
B. Swap the nodes 32 and 43
C. Swap the nodes 43 and 40
D. Insert 50 as the left child of 45
E. C&D

Insert 50 into a min-heap
• Insert key(x) in the first open slot at the last level of tree (going from left to right)
• If the heap property is not violated - Done
• Else: while(key(parent(x))>key(x)) swap the key(x) with key(parent(x))

12

41

45

47

Insert 50, then 35, then 8
6

10

40

12

32 4743

45 41

Delete min
• Replace the root with the rightmost node at the last level
• “Bubble down”- swap node with child with the smallest key value until the

heap property is restored

6

10

40

8

32 4712

45 41 50 35 43

Under the hood of heaps
• An efficient way of implementing heaps is using vectors
• Although we think of heaps as trees, the entire tree can be efficiently

represented as a vector!!

Implementing heaps using an array or vector

6

10

40

12

32 4743

45 41

Value

Index 0 1 2 3 4 5 6 7 8 9

Using vector as the internal data structure
of the heap has some advantages:

• More space efficient than trees
• Easier to insert nodes into the heap

6

10

40

12

32 4743

45 41

For a key at index i, index of the parent is
(i-1)/2

Value 6 10 12 40 32 43 47 45 41

Index 0 1 2 3 4 5 6 7 8

Finding the “parent” of a “node” in the vector representation

Insert into a heap
• Insert key(x) in the first open slot at the last level of tree (going from left to right)
• If the heap property is not violated - Done
• Else….

Insert the elements {12, 41, 47, 45, 32} in a min-Heap using the vector
representation of the heap

6

10

40

12

32 4743

45 41

Value 6 10 12 40 32 43 47 45 41

Index 0 1 2 3 4 5 6 7 8

Insert 50, then 35
For a node at index i, index of the parent is
(i-1)/2

Traversing down the tree

6

10

40

12

32 4743

45 41

For a node at index i, what is the index of
the left and right children?

A. (2*i, 2*i+1)
B. (2*i+1, 2*i+2)
C. (log(i), log(i)+1)
D. None of the above

Value 6 10 12 40 32 43 47 45 41

Index 0 1 2 3 4 5 6 7 8

Delete min
• Replace the root with the rightmost node at the last level
• “Bubble down”- swap node with one of the children until the heap

property is restored

6

10

40

8

32 4712

45 41 50 35 43

Delete min (pop)

Value 6 10 12 40 32 43 47 45 41 50 35

Index 0 1 2 3 4 5 6 7 8 9 10

What is the resulting vector after doing a pop()?

