HEAPS

Probl
em Solvi
Iving wi
g with Comput
ers-Il
GitH
ub

wde <30
sP

ysoct
osind nof®
inC mal“(\\
couc<<nﬁvlu S)
retor® =

Af\O\/\) i< PA2 D' ?,

. Faighed \ :
') s ON Noeel foish

g Maxieg POYE
c. Gane ’P‘(DS‘\C“

']/\'H’\Q v-(@%*(?ﬁ&

D .
155 Rowen¥ = a2 0

.-,
Heaps (priovivy quene

Clarification

* heap, the data structure is not related to heap, the region of me _
What are the operations supported? 1 ncecy ¢ PM y Mt detekesta

« What are the running times? 0L /1
Pusw: 0C Lo N

i 2 o () ’

Jeleke wivt OGNy

=
Heaps as binary trees

* Rooted binary tree that is as complete as possible
* In a min-Heap, each node satisfies the following heap property:
key(x)<= key(children of x)

: lowe d
Min Heap with 9 nodes c]/u?\‘ ceker Qfe A

Where is the minimum element?

Heaps as binary trees

* Rooted binary tree that is as complete as possible
* In a max-Heap, each node satisfies the following heap property:
key(x)>= key(children of x)

Max Heap with 9 nodes

Where is the maximum element?

Structure:: Complete binary tree

A heap is a complete binary tree: Each level is as full as possible.
Nodes on the bottom level are placed as far left as possible

K= 0(Locv))
o2 T
oJoXolo

e —_—-.—_.—.——_—
|dentifying heaps

Starting with the following min-Heap which of the following operations
will result in something that is NOT a min Heap

—

—_—

A. Swap the nodes 40 and 32

B. Swap the nodes 32 and 43 ¢
A/C. Swap the nodes 43 and 40 tﬁ""“\iw‘,
_/D. Insert 50 as the left child of 45 5;‘:;3,“

&D

Insert @nto aLmin-heag‘:

* Insert key(x) in the first open slot at the last level of tree (going from left to right)
* If the heap property is not violated - Done
* Else: while(key(parent(x))>key(x)) swap the key(x) with key(parent(x))

® @
o

: kil
Insert 50, then ?ﬁ then8 % Bubbling w v

—_— W+ { LN e {iﬁur
g pof
LhO
Pﬁ—"

Delete min [Po P>

* Replace the root with the rightmost e last level
* “Bubble down”- swap node with child W|th the smallest key value until the

heap property is restored
O(Log)

Under the hood of heapS Preortaf—guene Cink ,!«m@\»,! 3%&651*’

=
 An efficient way of implementing heaps is using vectors
 Although we think of heaps as trees, the entire tree can be efficiently

represented as a vector!!
\ .l ! \ LU

hes? (Tan pur Wa)
®
C{ \O \\MF € prachced D

d b

Implementing heaps using an array or vector

— — >k
Vaue ¢ 1o 12 40 >y, yIF 4T Y

L Index O 2 3 4 5 6 7 8 9

Using vector as the internal data structure
of the heap has some advantages:

* More space efficient than trees
@ » Easier to insert nodes into the heap

Finding the “parent” of a “node” in the vector representation

For a key at index i, index of the parent is
@ (i-1)/2
A=\

@ PM{M Tabex ({3 = ——’l
ORONE 2

2

w 9 b
Bwrd

D
Insertintoaheap <"

* Insert key(x) in the first open slot at the last level of tree (going from left to right)
* If the heap property is not violated - Done
* Else....

Insert the elements {B,iﬂ 4—7_, 45_, 3_2_} in a min-Heap using the vector
representation of the heap

Nec ke - 3*\‘“(’ Y\ 22 ®@
\1@199\ Wl 32) Y@i
o 4 . 2.4 ® GO
v Y
7- | -

i —

b p=

Insert 50, then 35

/@ For a node at index i, index of the parent is
ORMIORas .
oo L=
- pop

ol b anld) =
/ @b (‘l‘:aex- cighr A\ () =
N Wi

Value

o
%
Index @

10 12 40 32 43 . -
1 2 3 4 5 6 . .

Traversing down the tree

Q

Value 6 13 1_2(_ 4'0 32 43 47 5 41
‘\1 Index O 1 2 3 4 5 6 7

wens s 2@ ® @ - B

S > O ® ®

Trd0x l\) a4 6

gy &x

° For a node at index i, what is the index of

the left and right children?
@ G A. (2%, 2%i+1)
(2*i+1, 2%i+2)
@ g @ G - (log(i), log(i)+1)
@ 0 D. None of the above

Delete min

* Replace the root with the rightmost node at the last level

* “Bubble down”- swap node with one of the children until the heap
property is restored

Dellete min (pop)
0 g
Value ?)%‘; 12 40 }Z 43 47 45 4

Index O 10

1918

1
-

What is the resulting vector after doing a pop()?

