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Clarification

* heap, the data structure is not related to heap, the region of me _
What are the operations supported? 1  ncecy ¢ PM y Mt detekesta

« What are the running times? 0L /1
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Heaps as binary trees

* Rooted binary tree that is as complete as possible
* In a min-Heap, each node satisfies the following heap property:
key(x)<= key(children of x)
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Min Heap with 9 nodes c]/u?\‘ ceker  Qfe A

Where is the minimum element?



Heaps as binary trees

* Rooted binary tree that is as complete as possible
* In a max-Heap, each node satisfies the following heap property:
key(x)>= key(children of x)

Max Heap with 9 nodes

Where is the maximum element?



Structure:: Complete binary tree

A heap is a complete binary tree: Each level is as full as possible.
Nodes on the bottom level are placed as far left as possible
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|dentifying heaps

Starting with the following min-Heap which of the following operations
will result in something that is NOT a min Heap
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A. Swap the nodes 40 and 32

B. Swap the nodes 32 and 43 ¢
A/C. Swap the nodes 43 and 40 tﬁ""“\iw‘,
_/D. Insert 50 as the left child of 45 5;‘:;3,“
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Insert @nto aLmin-heag‘:

* Insert key(x) in the first open slot at the last level of tree (going from left to right)
* If the heap property is not violated - Done
* Else: while(key(parent(x))>key(x)) swap the key(x) with key(parent(x))
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Delete min [ Po P>

* Replace the root with the rightmost e last level
* “Bubble down”- swap node with child W|th the smallest key value until the

heap property is restored
O(Log )




Under the hood of heapS Preortaf—guene Cink ,!«m@\»,! 3%&651*’
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 An efficient way of implementing heaps is using vectors
 Although we think of heaps as trees, the entire tree can be efficiently

represented as a vector!!
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Implementing heaps using an array or vector
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Using vector as the internal data structure
of the heap has some advantages:

* More space efficient than trees
@ » Easier to insert nodes into the heap




Finding the “parent” of a “node” in the vector representation

For a key at index i, index of the parent is
@ (i-1)/2
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Insertintoaheap <"

* Insert key(x) in the first open slot at the last level of tree (going from left to right)
* If the heap property is not violated - Done
* Else....

Insert the elements {B,iﬂ 4—7_, 45_, 3_2_} in a min-Heap using the vector
representation of the heap
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Insert 50, then 35

/@ For a node at index i, index of the parent is
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10 12 40 32 43 . -
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Traversing down the tree
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Value 6 13 1_2(_ 4'0 32 43 47 5 41
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° For a node at index i, what is the index of

the left and right children?
@ G A. (2%, 2%i+1)
(2*i+1, 2%i+2)
@ g @ G - (log(i), log(i)+1)
@ 0 D. None of the above



Delete min

* Replace the root with the rightmost node at the last level

* “Bubble down”- swap node with one of the children until the heap
property is restored




Dellete min (pop)
0 g
Value ? )%‘; 12 40 }Z 43 47 45 4

Index O 10
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What is the resulting vector after doing a pop()?



