

LINKED LISTS - OOP STYLE
 RULE OF THREE

Problem Solving with Computers-II

Questions to ask about any data structure:

2

• What operations does the data structure support?
 A linked list supports the following operations:

1. Insert (a value to the head)
2. Append (a value to the tail)
3. Delete (a value)
4. Search (for a value)
5. Min
6. Max
7. Print all values

• How do you implement each operation?
• How fast is each operation?

Linked List Abstract Data Type (ADT)
class LinkedList {
public:
 LinkedList();
 ~LinkedList();
 // other public methods

private:
 struct Node {
 int info;
 Node* next;
 };
 Node* head;
 Node* tail;
};

Memory Errors
• Memory Leak: Program does not free memory allocated on the heap.

• Segmentation Fault: Code tries to access an invalid memory location

RULE OF THREE
If a class overload one (or more) of the following methods, it should overload all
three methods:
1. Destructor
2. Copy constructor
3. Copy assignment

The questions we ask are:
1. What is the behavior of these defaults?
2. What is the desired behavior ?
3. How should we over-ride these methods?

void test_append_0(){
LinkedList ll;
ll.append(10);

 ll.print();
}

What is the result of running the above code?
A. Compiler error
B. Memory leak
C. Segmentation fault
D. None of the above

Assume:
* Default destructor
* Default copy constructor
* Default copy assignment

A. To free LinkedList objects
B. To free Nodes in a LinkedList
C. Both A and B
D. None of the above

Why do we need to write a destructor for LinkedList?

Behavior of default copy constructor
void test_copy_constructor(){

LinkedList l1;
l1.append(1);
l1.append(2);
LinkedList l2{l1};
// calls the copy c’tor
l1.print();
l2.print();

}

Assume:
destructor: overloaded
copy constructor: default
copy assignment: default

What is the output?
A. Compiler error
B. Memory leak
C. Segmentation fault
D. All of the above
E. None of the above

Behavior of default copy assignment
l1 : 1 -> 2- > 5 -> null

void default_assignment_1(LinkedList& l1){
LinkedList l2;
l2 = l1;

}

* What is the behavior of the default assignment operator?
Assume:
* Overloaded destructor
* Default copy constructor
* Default copy assignment

Behavior of default copy assignment
void test_default_assignment_2(){
 LinkedList l1, l2;
 l1.append(1);
 l1.append(2)

l2 = l1;
l2.print()

}

Assume:
* Overloaded destructor
* Default copy constructor
* Default copy assignment

What is the result of running the above code?
A. Prints 1 , 2
B. Segmentation fault
C. Memory leak
D. A &B
E. A, B and C

Behavior of default copy assignment
void test_default_assignment_3(){
 LinkedList l1;
 l1.append(1);
 l1.append(2)
 LinkedList l2{l1};

l2.append(10);
l2.append(20);
l2 = l1;
l2.print()

}
Assume:
* Overloaded destructor
* Overloaded copy constructor
* Default copy assignment

What is the result of running the above code?
A. Prints 1 , 2
B. Segmentation fault
C. Memory leak
D. A &B
E. A, B and C

Overloading Binary Comparison Operators

void isEqual(const LinkedList & lst1, const LinkedList &lst2){
 if(lst1 == lst2)

 cout<<“Lists are equal”<<endl;
else
 cout<<“Lists are not equal”<<endl;

}

We would like to be able to compare two objects of the class using the
following operators
==
!=
and possibly others

Overloading Binary Arithmetic Operators
We would like to be able to add two points as follows

LinkedList l1, l2;

//append nodes to l1 and l2;

LinkedList l3 = l1 + l2 ;

Overloading input/output stream
Wouldn’t it be convenient if we could do this:

LinkedList list;
cout<<list; //prints all the elements of list

Next time
• Binary Search Trees

