BINARY SEARCH TREES

Problem Solving with Computers-l| C | '
ae dosa:a;“:d;
"‘n.c“: na“\espac
pein . o \L\

Trees @ A tree has following general properties:
O

v

* One node is distinguished as a root;
o e ost e Every node (exclude a root) is connected
N by a directed edge from exactly one other
node;
A direction is: parent -> children
» Leaf node: Node that has no children

2 ods\dren. afe T oo &
rode Nhed 0¥

- ey
OROIO Binty e 6y 10N o

Which of the following is/are a tree?

cO¥

Gy e pra mesde ek
oy A o™ % O/? \@

(DA&B cf%

E. All of A-C

W

Binary Search Trees (557 >

@Nhat are the operations supported?
Seved okl
C Seolr N, Y MOXK o 0 O®
@What are the running times of these operations?
/
next leckwee

e /gﬁsﬁ* ngert 0‘5*‘) delele

@How do you implement the BST i.e. operations supported by it?

e
Operations supported by Sorted arrays and Binary Search Trees (BST)

Operations
~IMin

/'Max -
gSuccessor)
P g

~

A1

Predecessor._|

Search

Insert

Delete

/Brint elements in order

\
Binary Search Tree — What is it? 90 Quplede <
i B

« Each node:
» stores a key (k)
* has a pointer to left child, right child
and parent (optional)
« Satisfies the Search Tree Property

For any node,
Keys in node’s left subtree < Node’s key

-y Node’s key < Keys in node’s right subtree
T £ % K Tl S)

Do the keys have to be integers?

Which of the following is/are a binary search tree?

B
BSTs allow efficient search!

(587
\[- Start at the root;
e =
@ * Trace down a path by comparing k with the key of the
L current node x:
@ @ - Ifthe kwl: we have found the key
S « If k <key[x] search in the left subtree of x
G 0 @ - If k> key[x] search in the righ@tree of x
%m S acdn BN Y -

\ IL\BL 1 [L\l\ \t\“\&@\
o ¢t » 2z w&
N

@ Search for 41, then search for 53

D> -—— <

AnodeinaBST

class BSTNode {

public:
BSTNode* left;
BSTNode* right;
BSTNode* parent;
int const data;

BSTNode(const int & d) : data(d) {
left = right = parent = 0;
}
};

Define the BSTADT

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements in order

Traversing down the tree

Suppose n is a pointer to the root. What is the output & /
of the following code:

n = n->left; °
n = n->right;
cout<<n->data<<endl; ° °
A. 42
AN

B. 32
% O® G
@41
. Segfault

Traversing up the tree

+ Suppose n is a pointer to the node with value 50.
What is the output of the following code:

n = n->parent; °

n = n->parent;

n = n->left; °
cout<<n->data<<endl; °

A. 42

. OXOMO

C. 12

D. 45
E. Segfault

Insert

*Insert 40
@ - Search for the key
@ @ - Insert at the spot you expected to find it

I
Max

Goal: find the maximum key value in a BST

Following right child pointers from the root, until a @
leaf node is encountered. The least node has the max

value
Alg: int BST: :max () e a G @
& @
)

Maximum = 20

Min

Goal: find the minimum key value in a BST
Start at the root. @

Follow child pointers from the root, until a

leaf node is encountered e @

Leaf node has the min key value
Alg: int BST in () e e G @
g:in ::min o o @
©

Min =?

In order traversal: print elements in sorted order

e Algorithm Inorder(tree)
1. Traverse the left subtree, i.e., call Inorder(left-subtree)
@ e 2. Visit the root.
3. Traverse the right subtree, i.e., call Inorder(right-subtree)

Pre-order traversal: nice way to linearize your tree!

e Algorithm Preorder(tree)
1. Visit the root.
@ e 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
3. Traverse the right subtree, i.e., call Preorder(right-subtree)

Post-order traversal: use in recursive destructors!

e Algorithm Postorder(tree)
1. Traverse the left subtree, i.e., call Postorder(left-subtree)
@ 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
e 3. Visit the root.

Predecessor: Next smallest element
e * What is the predecessor of 327

* What is the predecessor of 457

Successor: Next largest element

@ - What is the successor of 45?
- What is the successor of 507?

a Q - What is the successor of 607?

Delete: Case 1

e Case 1: Node is a leaf node
+ Set parent’s (left/right) child pointer to null

a @ * Delete the node

® o6 @

Delete: Case 2

e Case 2 Node has only one child
* Replace the node by its only child

Delete: Case 3
e Case 3 Node has two children

- Can we still replace the node by one of its

a Q children? Why or Why not?

® o6 @

e I
Binary Search

- Binary search. Given value and sorted array a[], find index i such
that a[i] = value, or report that no such index exists.

- Invariant. Algorithm maintains a[1o] =value =< a[hi].

- Ex. Binary search for 33.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lo hi

