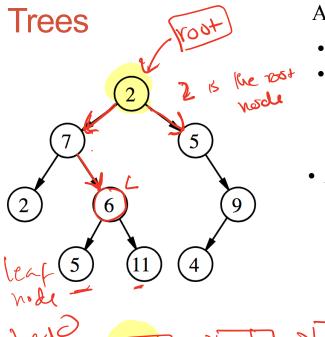
BINARY SEARCH TREES

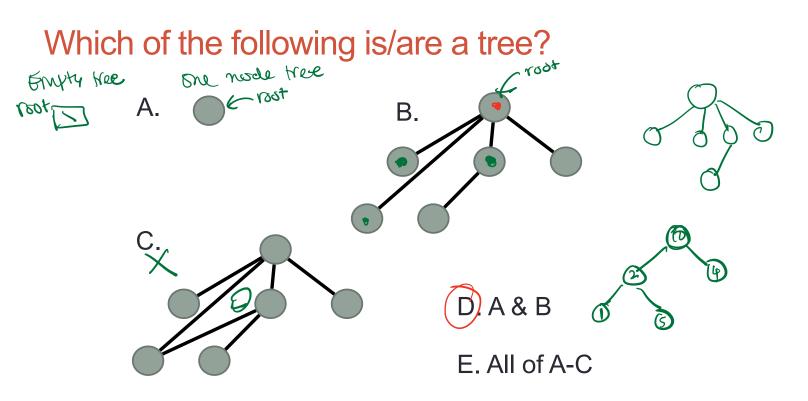
Problem Solving with Computers-II

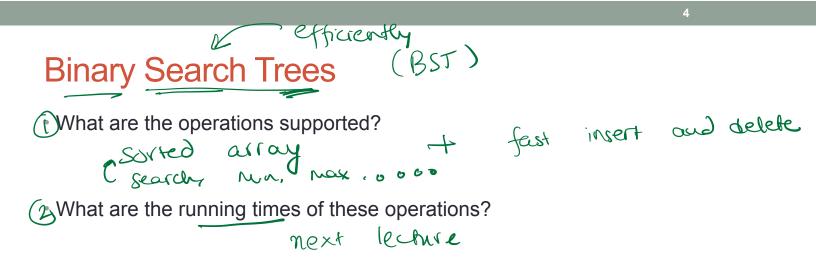


A tree has following general properties:

- One node is distinguished as a **root**;
- Every node (exclude a root) is connected by a directed edge *from* exactly one other node;
 - A direction is: *parent -> children*
- Leaf node: Node that has no children
 - 2' children are 7 and 5
 - Binary thee: every node has at most two children

7



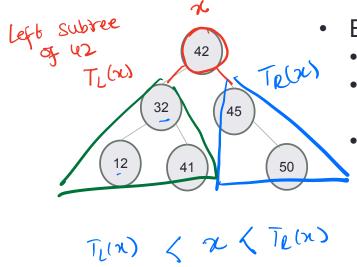


How do you implement the BST i.e. operations supported by it?

Operations supported by Sorted arrays and Binary Search Trees (BST)

	Operations	
¥	Min	
~	Max	
~	Successor ()	
5	Predecessor	
	Search	
~	Insert	
/	Delete	
	Print elements in order	

Binary Search Tree - What is it? No deplicates

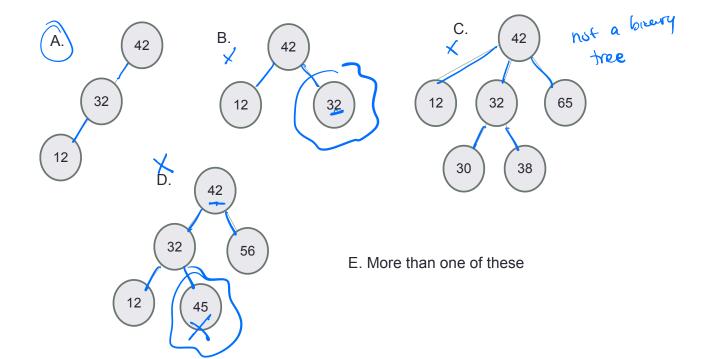


- Each node:
 - stores a key (k)
 - has a pointer to left child, right child and parent (optional)
 - Satisfies the Search Tree Property

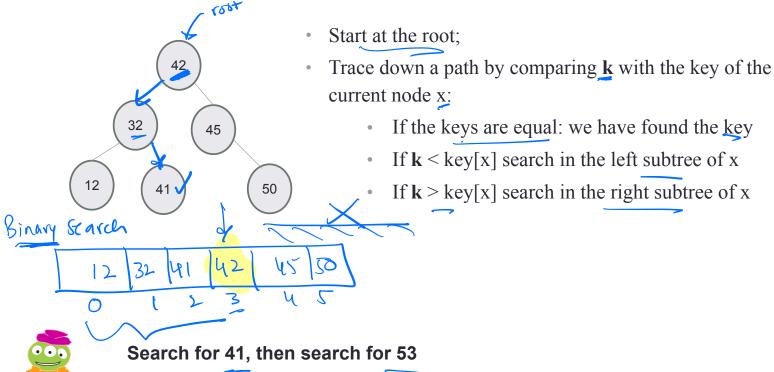
For any node,

Keys in node's left subtree < Node's key Node's key < Keys in node's right subtree

Which of the following is/are a binary search tree?



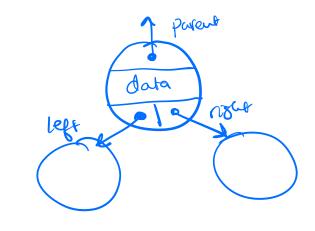
BSTs allow efficient search!



A node in a BST

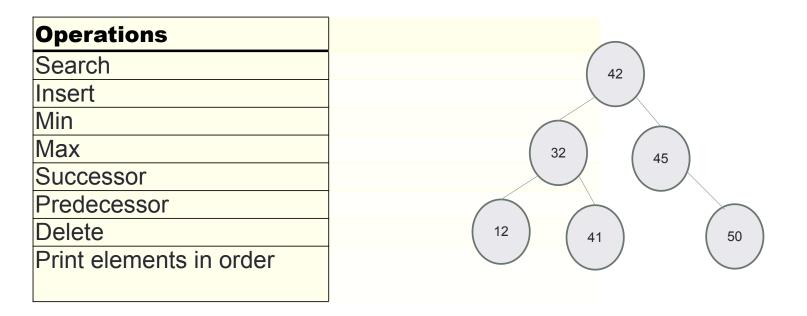
class BSTNode {

```
public:
BSTNode* left;
BSTNode* right;
BSTNode* parent;
int const data;
```



```
BSTNode( const int & d ) : data(d) {
    left = right = parent = 0;
  }
};
```

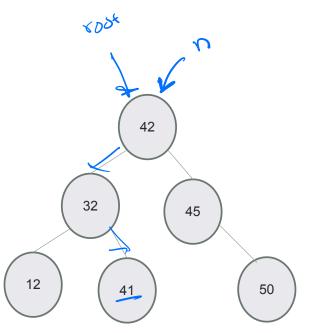
Define the BST ADT



Traversing down the tree

• Suppose n is a pointer to the root. What is the output of the following code:

```
n = n -> left;
n = n - right;
cout<<n->data<<endl;</pre>
 A. 42
 B. 32
 C. 12
 D.141
    Segfault
 Ē
```



Traversing up the tree

- Suppose n is a pointer to the node with value 50.
- What is the output of the following code:

```
n = n->parent;
```

- n = n->parent;
- n = n -> left;

cout<<n->data<<endl;</pre>

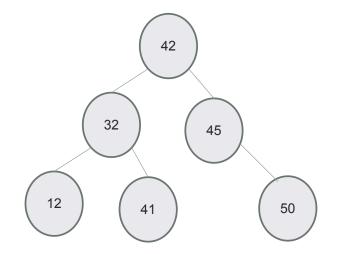
A. 42

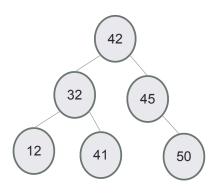
B. 32

C. 12

D. 45

E. Segfault



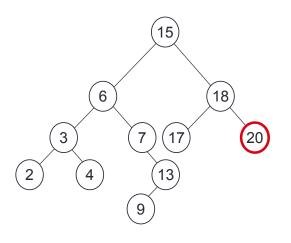


- Insert 40
- Search for the key
- Insert at the spot you expected to find it

Max

Goal: find the maximum key value in a BST Following right child pointers from the root, until a leaf node is encountered. The least node has the max value

Alg: int BST::max()



Maximum = 20

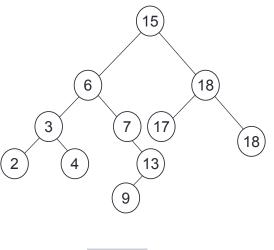
Min

Goal: find the minimum key value in a BST Start at the root.

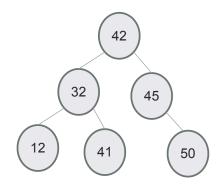
Follow _____ child pointers from the root, until a leaf node is encountered

Leaf node has the min key value

```
Alg: int BST::min()
```



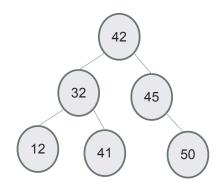
In order traversal: print elements in sorted order



Algorithm Inorder(tree)

- 1. Traverse the left subtree, i.e., call Inorder(left-subtree)
- 2. Visit the root.
- 3. Traverse the right subtree, i.e., call Inorder(right-subtree)

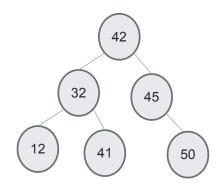
Pre-order traversal: nice way to linearize your tree!



Algorithm Preorder(tree)

- 1. Visit the root.
- 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
- 3. Traverse the right subtree, i.e., call Preorder(right-subtree)

Post-order traversal: use in recursive destructors!

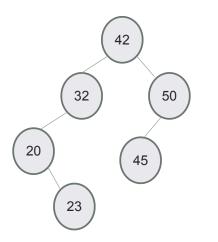


Algorithm Postorder(tree)

- 1. Traverse the left subtree, i.e., call Postorder(left-subtree)
- 2. Traverse the right subtree, i.e., call Postorder(right-subtree)

3. Visit the root.

Predecessor: Next smallest element



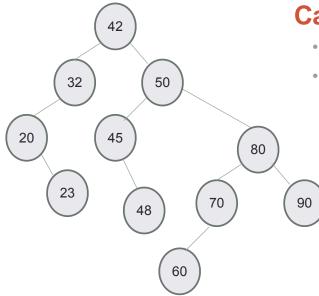
- What is the predecessor of 32?
- What is the predecessor of 45?

Successor: Next largest element



- What is the successor of 45?
- What is the successor of 50?
- What is the successor of 60?

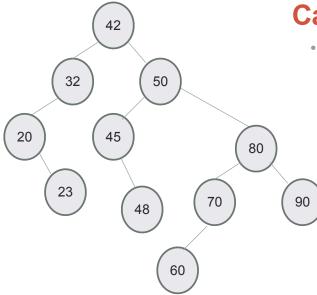
Delete: Case 1



Case 1: Node is a leaf node

- Set parent's (left/right) child pointer to null
- Delete the node

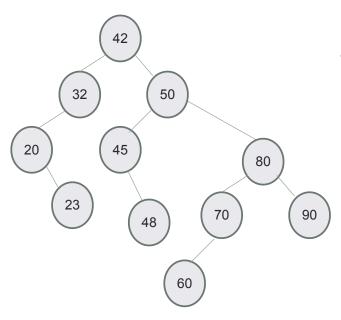
Delete: Case 2



Case 2 Node has only one child

· Replace the node by its only child

Delete: Case 3



Case 3 Node has two children

 Can we still replace the node by one of its children? Why or Why not?

Binary Search

- Binary search. Given value and sorted array a[], find index i such that a[i] = value, or report that no such index exists.
- Invariant. Algorithm maintains a [lo] < value < a [hi].
- Ex. Binary search for 33.

6	13	14	25	33	43	51	53	64	72	84	93	95	96	97
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Î														Ì
lo														hi