BINARY SEARCH TREES
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Trees @ A tree has following general properties:
O

v

* One node is distinguished as a root;
o e ost e Every node (exclude a root) is connected
N by a directed edge from exactly one other
node;
A direction is: parent -> children
» Leaf node: Node that has no children
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Which of the following is/are a tree?
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E. All of A-C
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Binary Search Trees (557 >

@Nhat are the operations supported?
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@What are the running times of these operations?
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@How do you implement the BST i.e. operations supported by it?
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Operations supported by Sorted arrays and Binary Search Trees (BST)

Operations
~IMin

/'Max -
gSuccessor )
P g

~

A1

Predecessor._|

Search

Insert

Delete

/Brint elements in order
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Binary Search Tree — What is it? 90 Quplede <
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« Each node:
» stores a key (k)
* has a pointer to left child, right child
and parent (optional)
« Satisfies the Search Tree Property

For any node,
Keys in node’s left subtree < Node’s key

-y Node’s key < Keys in node’s right subtree
T £ % K Tl S )

Do the keys have to be integers?



Which of the following is/are a binary search tree?
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BSTs allow efficient search!

(587
\[ - Start at the root;
e =
@ * Trace down a path by comparing k with the key of the
L current node x:
@ @ - Ifthe kwl: we have found the key
S « If k <key[x] search in the left subtree of x
G 0 @ - If k> key[x] search in the righ@tree of x
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@ Search for 41, then search for 53
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AnodeinaBST

class BSTNode {

public:
BSTNode* left;
BSTNode* right;
BSTNode* parent;
int const data;

BSTNode( const int & d ) : data(d) {
left = right = parent = 0;
}
};



Define the BSTADT

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements in order




Traversing down the tree

Suppose n is a pointer to the root. What is the output & /
of the following code:

n = n->left; °
n = n->right;
cout<<n->data<<endl; ° °
A. 42
AN

B. 32
% O® G
@41
. Segfault



Traversing up the tree

+ Suppose n is a pointer to the node with value 50.
What is the output of the following code:

n = n->parent; °

n = n->parent;

n = n->left; °
cout<<n->data<<endl; °

A. 42

. OXOMO

C. 12

D. 45
E. Segfault



Insert

*Insert 40
@ - Search for the key
@ @ - Insert at the spot you expected to find it
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Max

Goal: find the maximum key value in a BST

Following right child pointers from the root, until a @
leaf node is encountered. The least node has the max

value
Alg: int BST: :max () e a G @
& @
)

Maximum = 20



Min

Goal: find the minimum key value in a BST
Start at the root. @

Follow child pointers from the root, until a

leaf node is encountered e @

Leaf node has the min key value
Alg: int BST in () e e G @
g:in ::min o o @
©

Min =?



In order traversal: print elements in sorted order

e Algorithm Inorder(tree)
1. Traverse the left subtree, i.e., call Inorder(left-subtree)
@ e 2. Visit the root.
3. Traverse the right subtree, i.e., call Inorder(right-subtree)



Pre-order traversal: nice way to linearize your tree!

e Algorithm Preorder(tree)
1. Visit the root.
@ e 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
3. Traverse the right subtree, i.e., call Preorder(right-subtree)



Post-order traversal: use in recursive destructors!

e Algorithm Postorder(tree)
1. Traverse the left subtree, i.e., call Postorder(left-subtree)
@ 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
e 3. Visit the root.



Predecessor: Next smallest element
e * What is the predecessor of 327

* What is the predecessor of 457



Successor: Next largest element

@ - What is the successor of 45?
- What is the successor of 507?

a Q - What is the successor of 607?



Delete: Case 1

e Case 1: Node is a leaf node
+ Set parent’s (left/right) child pointer to null

a @ * Delete the node
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Delete: Case 2

e Case 2 Node has only one child
* Replace the node by its only child



Delete: Case 3
e Case 3 Node has two children

- Can we still replace the node by one of its

a Q children? Why or Why not?
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Binary Search

- Binary search. Given value and sorted array a[], find index i such
that a[i] = value, or report that no such index exists.

- Invariant. Algorithm maintains a[1o] =value =< a[hi].

- Ex. Binary search for 33.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97
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