BINARY SEARCH TREES
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Trees @ A tree has following general properties:
O

v

* One node is distinguished as a root;
o e ost e Every node (exclude a root) is connected
N by a directed edge from exactly one other
node;
A direction is: parent -> children
» Leaf node: Node that has no children
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Which of the following is/are a tree?
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Binary Search Trees (557 >

@Nhat are the operations supported?
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@What are the running times of these operations?
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@How do you implement the BST i.e. operations supported by it?
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Operations supported by Sorted arrays and Binary Search Trees (BST)

Operations
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Search

Insert

Delete

/Brint elements in order
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Binary Search Tree — What is it? 90 Quplede <
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« Each node:
» stores a key (k)
* has a pointer to left child, right child
and parent (optional)
« Satisfies the Search Tree Property

For any node,
Keys in node’s left subtree < Node’s key

-y Node’s key < Keys in node’s right subtree
T £ % KTl S )

Do the keys have to be integers?



Which of the following is/are a binary search tree?
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BSTs allow efficient search!

(587
\[ - Start at the root;
e =
@ * Trace down a path by comparing k with the key of the
L current node x:
@ @ - Ifthe kwl: we have found the key
S « If k <key[x] search in the left subtree of x
G 0 @ - If k> key[x] search in the righ@tree of x
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@ Search for 41, then search for 53

D> -—— <




AnodeinaBST

class BSTNode {

public:
BSTNode* left;
BSTNode* right;
BSTNode* parent;
int const data;

BSTNode( const int & d ) : data(d) {
left = right = parent = 0;
}
};



Define the BSTADT

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements in order




Traversing down the tree

Suppose n is a pointer to the root. What is the output & /
of the following code:

n = n->left; °
n = n->right;
cout<<n->data<<endl; ° °
A. 42
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B. 32
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. Segfault



Traversing up the tree

Suppose n is a pointer to the node with value 50.

M
+ What is the output of the following code: ‘LZ
n = n->parent; [% (lm), Pa‘ler& } ?
n = n->parent; // oL
n = n->left; ‘ 7
—
cout<<n->data<<endl; if (2% ”
— gt V4
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C. 12 phile @0 > prcat)
D. 45 )
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Insert

*Insert 40
@ - Search for the key
@ @ - Insert at the spot you expected to find it
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Max

Goal: find the maximum key value in a BST

ollowing right child pointers from the root, until a
leaf node is encountered. The/lgeet node has the max
value
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Alg: int BST: :max()
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Min

Goal: find the minimum key value in a BST
Start at the root.

Follow child pointers from the root, until a
leaf node is encountered

Leaf node has the min key value

Alg: int BST: :min ()




In order traversal: print elements in sorted order
/ (oo —

gorithm Inorder(tree)
1. Traverse the left subtree, i.e., call Inorder(left-subtree)

2. Visit the root.
3. Traverse the right subtree, i.e., call Inorder(right-subtree)
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Pre-order traversal: nice way to linearize your tree!
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Algorithm Preorder(tree)
1. Visit the root.
2. Traverse the left subtree, i.e., call Preorder(left-subtree)
3. Traverse the right subtree, i.e., call Preorder(right-subtree)
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Post-order traversal: use in recursive destructors!
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Algorithm Postorder(tree)
1. Traverse the left subtree, i.e., call Postorder(left-subtree)
2. Traverse the right subtree, i.e., call Postorder(right-subtree)
3. Visit the root.
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Predecessor: Next smallest element

* What is the predecessor of 327
* What is the predecessor of 45?2
50 )
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Successor: Next largest element

@ - What is the successor of 45?
- What is the successor of 507?

a Q - What is the successor of 607?



Delete: Case 1 bet. exate (60)

Q Case 1: Node is a leaf node
+ Set parent’s (left/right) child pointer to null

* Delete the node
Chea e qode
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Delete: Case 2 bei- erage (22O

Case 2 Node has only one child
* Replace the node by its only child
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Delete: Case 3 bet- - exane —
Case 3 Node has two chﬁdren

- Can we still replace the node by one of its
children? Why or Why not?
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Binary Search

- Binary search. Given value and sorted array a[], find index i such
that a[i] = value, or report that no such index exists.

- Invariant. Algorithm maintains a[1o] =value =< a[hi].

- Ex. Binary search for 33.
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