BINARY SEARCH TREES

Problem Solving with Computers-II

C++

include <iostre stdi
using
ing namespacel main()l facebook ":
cout<"Hola

A tree has following general properties:

- One node is distinguished as a root;
- Every node (exclude a root) is connected by a directed edge from exactly one other node;
A direction is: parent -> children
- Leaf node: Node that has no children 2 children are 7 and 5 Binary tree: every node has at most two children

Which of the following is/are a tree?

Empty free root \square A. \longleftarrow root

D. $A \& B$

E. All of A-C

Binary Search Trees
(1 What are the operations supported?
$\overbrace{\text { Search arm may max }}^{\text {sorted }}$ moon fast insert and delete
(3 What are the running times of these operations?
next lecture
(3) How do you implement the BST i.e. operations supported by it?

Operations supported by Sorted arrays and Binary Search Trees (BST)

Binary Search Tree - What is it? no duplicates!

- Each node:
- stores a key (k)
- has a pointer to left child, right child and parent (optional)
- Satisfies the Search Tree Property

For any node,
Keys in node's left subtree < Node's key
$T_{L}(x)<x<T_{l}(x)$ Node's key < Keys in node's right subtree

Which of the following is/are a binary search tree?

E. More than one of these

BSTs allow efficient search!

A node in a BST

class BSTNode \{

public:

BSTNode* left; BSTNode* right; BSTNode* parent;
 int const data;

BSTNode(const int \& d) : data(d) \{
left $=$ right $=$ parent $=0$;
\}
\};

Define the BST ADT

Traversing down the tree

- Suppose n is a pointer to the root. What is the output of the following code:
$\left[\begin{array}{l}\mathrm{n}=\mathrm{n}->\text { left; } \\ \mathrm{n}=\mathrm{n}->\text { right; } \\ \text { cout<<n->data<<endl } ;\end{array}\right.$
A. 42
B. 32
C. 12
D. 41
E. Segfault

Traversing up the tree

Suppose n is a pointer to the node with value 50 .
What is the output of the following code:
(B.) 32
C. 12
// loop to tr at
while ($68^{2} n \rightarrow$ parent)

D. 45
E. Segfault
\}
$n=n \rightarrow$ parent;

$$
\begin{aligned}
& \text { A. } 42
\end{aligned}
$$

(1) Insert a sequence of key iteratively to build a BST
$42,32,12,41,45,50$
(2) The fincel structure of the BST depends on the order we insert the keys.

Start with $(32)^{\text {empty }}$ BST
Insert $(32)^{\text {with }}$
Insert (42)

Insert (\$2)
Tensert (41)
Tusert (45)
Tensert (50)
Ensert (43)

(12)

Insert

- Insert 40
- Search for the key
- Insert at the spot you expected to find it

Goal: find the maximum key value in a BST C following right child pointers from the root, until a leaf node is encountered. Thethest node has the max value
\qquad
Alg: int BST: : $\max ()\}$
BSTNOde $\neq n=$ root;

$$
\text { if }(!n) \xi
$$

return std:: numeric -limits \langle int $\rangle:: \min ()$; ? while $(n \rightarrow$ right $\}$

$$
n=n \rightarrow \text { right; }
$$

$\}$
1 return $n \rightarrow$ data;

Maximum $=20$

Min

Goal: find the minimum key value in a BST Start at the root.
Follow \qquad child pointers from the root, until a leaf node is encountered
Leaf node has the min key value

Alg: int BST: :min()

Min $=$?

In order traversal: print elements in sorted order

Pre-order traversal: nice way to linearize your tree!

Post-order traversal: use in recursive destructors!

Algorithm Postorder(tree)

1. Traverse the left subtree, i.e., call Postorder(left-subtree)
2. Traverse the right subtree, i.e., call Postorder(right-subtree)
3. Visit the root.

$$
\text { Postorder (} T \text {) }
$$

if $\left(\frac{1}{0}\right)$ return
Hint:
Use in clear method Post order ($\gamma \rightarrow$ left) to delete all cont $\ll r \rightarrow$ data the nodes 3

Predecessor: Next smallest element

Successor: Next largest element

-What is the successor of $45 ?$
-What is the successor of 50 ?
-What is the successor of 60?

Delete: Case 1 bst.erase (60)

Case 1: Node is a leaf node

- Set parent's (left/right) child pointer to null
- Delete the node
check if the node is a leap node

$$
\begin{aligned}
& \text { heckle (If the } n \rightarrow \text { left \&\& }!n \rightarrow \text { right }) \xi \\
& \text { in case } 1 \\
& \text { if }(n \rightarrow \text { parent } k \& n=n \rightarrow \text { parent } \rightarrow \text { left }) \\
& n \rightarrow \text { parent } \rightarrow \text { lest }=\text { nullptr; }
\end{aligned}
$$

I/ ada move code.
$\}$
delete n;

Delete: Case 2
bst-erase (32)

Case 2 Node has only one child

- Replace the node by its only child
delete n;

Delete: Case 3

Dst. erase (50)
Case 3 Node has two children

- Can we still replace the node by one of its children? Why or Why not?

1. Swap the key of the node that we want to delete with its successor or predecessor
2. delete the node that used to be the predecessor (or successor) using either cassel or case 2 logic

Binary Search

- Binary search. Given value and sorted array a [], find index i such that a [i] = value, or report that no such index exists.
- Invariant. Algorithm maintains a[lo] s value $\leq \mathrm{a}$ [hi].
- Ex. Binary search for 33.

