BINARY SEARCH TREES

Problem Solving with Computers-l| C | '
ae dosa:a;“:d;
"‘n.c“: na“\espac
pein . o \L\

Trees @ A tree has following general properties:
O

v

* One node is distinguished as a root;
o e ost e Every node (exclude a root) is connected
N by a directed edge from exactly one other
node;
A direction is: parent -> children
» Leaf node: Node that has no children

9 ods\dren. afe T o §
rode Nhed o5

- ey
OROIO Binty e iy 108 o

Which of the following is/are a tree?

cO¥

Gy e pra mesde ek
oy A o™ % O/? \@

(DA&B cf%

E. All of A-C

W

Binary Search Trees (557 >

@Nhat are the operations supported?
Seved okl
C Seolry N, Y MOXK . p 0 O®
@What are the running times of these operations?
/
next leckwee

e /gﬁsﬁ* ngert 0‘5*‘) delele

@How do you implement the BST i.e. operations supported by it?

e
Operations supported by Sorted arrays and Binary Search Trees (BST)

Operations
~IMin

/'Max -
gSuccessor)
P g

~

A1

Predecessor._|

Search

Insert

Delete

/Brint elements in order

\
Binary Search Tree — What is it? 90 Quplede <
i B

« Each node:
» stores a key (k)
* has a pointer to left child, right child
and parent (optional)
« Satisfies the Search Tree Property

For any node,
Keys in node’s left subtree < Node’s key

-y Node’s key < Keys in node’s right subtree
T £ % KTl S)

Do the keys have to be integers?

Which of the following is/are a binary search tree?

B
BSTs allow efficient search!

(587
\[- Start at the root;
e =
@ * Trace down a path by comparing k with the key of the
L current node x:
@ @ - Ifthe kwl: we have found the key
S « If k <key[x] search in the left subtree of x
G 0 @ - If k> key[x] search in the righ@tree of x
%w S acdn BN Y -

\ IL\BL 1 [L\l\ \t\“\&@\
o t » =z 4w
N

@ Search for 41, then search for 53

D> -—— <

AnodeinaBST

class BSTNode {

public:
BSTNode* left;
BSTNode* right;
BSTNode* parent;
int const data;

BSTNode(const int & d) : data(d) {
left = right = parent = 0;
}
};

Define the BSTADT

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements in order

Traversing down the tree

Suppose n is a pointer to the root. What is the output & /
of the following code:

n = n->left; °
n = n->right;
cout<<n->data<<endl; ° °
A. 42
AN

B. 32
% O® G
@41
. Segfault

Traversing up the tree

Suppose n is a pointer to the node with value 50.

M
+ What is the output of the following code: ‘LZ
n = n->parent; [% (lm), Pa‘ler& } ?
n = n->parent; // oL
n = n->left; ‘ 7
—
cout<<n->data<<endl; if (2% ”
— gt V4
A. 42 1
rte b A gook 1o
@ 32 // loop fo fooce
C. 12 phile @0 > prcat)
D. 45)
E. Segfault 3 LN <

Insert

*Insert 40
@ - Search for the key
@ @ - Insert at the spot you expected to find it

I
Max

Goal: find the maximum key value in a BST

ollowing right child pointers from the root, until a
leaf node is encountered. The/lgeet node has the max
value

b oindude € mmﬂrc%
Alg: int BST: :max()
RLTNOAL *+ 0 = root

LS o o |
'R,h;(n s noameric - Limuds byt Q)

g
whele € 0 N %
N = ,ﬁg\/&/» Maximum = 20
W\ =

\? Cofutn M7 ke

Min

Goal: find the minimum key value in a BST
Start at the root.

Follow child pointers from the root, until a
leaf node is encountered

Leaf node has the min key value

Alg: int BST: :min ()

In order traversal: print elements in sorted order
/ (oo —

gorithm Inorder(tree)
1. Traverse the left subtree, i.e., call Inorder(left-subtree)

2. Visit the root.
3. Traverse the right subtree, i.e., call Inorder(right-subtree)

Tooer (T O §

f () ceueo
T“OGMQQL\). Todrder (€ e
et e ot TR)
\2 22 L\ AL‘/.—\ Tadeder C € Tah\')

Pre-order traversal: nice way to linearize your tree!

o
w‘

Algorithm Preorder(tree)
1. Visit the root.
2. Traverse the left subtree, i.e., call Preorder(left-subtree)
3. Traverse the right subtree, i.e., call Preorder(right-subtree)

D
A%V g 6)(-2, Ower (€ s
Durprt o BeEtede o e e i (L) ceurn

- 50 “ ¢ T daota
23 12 4l 4s S Couk &
11{2 < @e order (€ ‘%ﬂ \
. @/ o P Ocder (G S faN'
/
& ® & 3

e
Post-order traversal: use in recursive destructors!

p—

Algorithm Postorder(tree)
1. Traverse the left subtree, i.e., call Postorder(left-subtree)
2. Traverse the right subtree, i.e., call Postorder(right-subtree)
3. Visit the root.

r l?o&k(‘)fdef Gy 3 g

i (o) vehuen
Link- { e Posr drder (s> \%}’3&)
Use W oea foradeaer C €23
4D d,dw al} (ouk << T

Predecessor: Next smallest element

* What is the predecessor of 327
* What is the predecessor of 45?2
50)

\20\23 \31 \\4?— \45-\
=

P
decessor (€D S ubivee 3
P{c\(f(> o) 3 , ol 0 e \egt < b
feruin s ™

' N
}d\i;?u ?aw\k ?o‘w\krs undl a
[
% suin N Sdokea

Successor: Next largest element

@ - What is the successor of 45?
- What is the successor of 507?

a Q - What is the successor of 607?

Delete: Case 1 bet. exate (60)

Q Case 1: Node is a leaf node
+ Set parent’s (left/right) child pointer to null

* Delete the node
Chea e qode
.\’g‘ C !) \&B\'
Ir case 2 -5 Pofent = \edst %

?\Q_ Ne=s
4 («\—Epo«fzn’r > Ve = MO

co&l N

i G \eﬁ{ 'Y\t)&—'
g & Im— gk D3

J add Wi

Aede ke o
%

Delete: Case 2 bei- erage (22O

Case 2 Node has only one child
* Replace the node by its only child

@ @ Jelete My

®

S =

Delete: Case 3 bet- - exane —
Case 3 Node has two chﬁdren

- Can we still replace the node by one of its
children? Why or Why not?

et W&
j'@m\c Okvt(n nods wof N
ot 4D qefete wiita vi= e

You MO
- i?d{iu \’b{zéec%af‘(

\Ly)u\e i oot !
o 5

S 1o
Fect wet
o o £uccessoy)

¢ Core

e I
Binary Search

- Binary search. Given value and sorted array a[], find index i such
that a[i] = value, or report that no such index exists.

- Invariant. Algorithm maintains a[1o] =value =< a[hi].

- Ex. Binary search for 33.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lo hi

