
C/C++

Handout: The Big Three: Crafting STL-Like Classes
Big picture: By building and analyzing custom classes that mimic STL
components like std::list, you will internalize key C++ design
principles—encapsulation, operator overloading, dynamic memory
management —while appreciating why STL is robust and reusable.

Big Three: Destructor, Copy Constructor, Copy Assignment Operator
C++ provides default versions of all three functions, but you need to write your
own if your class uses dynamic memory.

Complex Class (No Dynamic Memory)

Here’s the updated Complex class with no dynamic memory from last
lecture. The default big three work perfectly fine!

class Complex {
public:
 Complex(double re = 0.0, double im = 0.0) {
 real = re;
 imag = im;
 }
 double getReal() const { return real; }
 double getImag() const { return imag; }
 void setReal(double re) { real = re; }
 void print() const {
 cout << real << " + "
 << imag << "j" << endl;
 }

private:
 double real;
 double imag;
};

1

C/C++

Complex Class (With Dynamic Memory)

Here’s the updated Complex class with dynamic memory. We’ll explore
why it needs special handling.

class Complex {
public:
 Complex(double re = 0.0, double im = 0.0) {
 data = new double[2]; // Dynamic array
 data[0] = re; // Real part
 data[1] = im; // Imaginary part
 }
 double getReal() const { return data[0]; }
 double getImag() const { return data[1]; }
 void setReal(double re) { data[0] = re; }
 void print() const {
 cout << data[0] << " + "
 << data[1] << "j" << endl;
 }
 // Big Three methods (live coding)

private:
 double* data; // Pointer to dynamic memory
};

2

C/C++

Activity 1: Memory Diagrams with Defaults
Goal: Understand how default behavior works (or fails) with both versions of
Complex. Draw memory diagrams for the stack and heap (if applicable). Use
arrows for pointers and boxes for objects/values.

int foo() {
 Complex x(3.0, 4.0);
 Complex y = x; // Default copy constructor
 y.setReal(5.0);
 x.print();
 y.print();
 return 0;
} // Objects destroyed here

1. Draw the stack and heap after the first three lines are executed.

Assume Complex class that uses dynamic memory (on page 2)
2. Will the values printed for x and y differ (as intended in the code) ?
A. Yes B. No

3

Unset

3. What happens when x and y are destroyed after foo() returns?
Hint: No destructor yet!

A. No problem occurs
B. Something goes wrong at compile time
C. Something goes wrong at run time
(Memory Leaks / Crashes /Double deletion/incorrect output)

Note: To check for memory leaks, run your executable (a.out) through the
tool valgrind. See usage below:

valgrind --leak-check=full ./a.out

(10 mins) Activity 2: Fixing issues in Complex
Goal: Predict how implementing the Big Three solves the problems. You’ll
see these implemented live!

1.​ Destructor: Add ~Complex(). Use delete[] data; to free the
array. After adding ~Complex() to free data, does it fix everything?

A.​ Yes, all memory issues are fixed.
B.​ No, copies still share the same data.
C.​ No, it causes a crash immediately.
D.​ Yes, but only for one object.

Note: Use gdb to step through the code and see how execution jumps into
the destructor function (~Complex()), right after foo() returns.

gdb commands (today)1

●​ gdb <name of executable> //Start GDB and load the executable
●​ [b] or break <filename:line number> //Set a breakpoint on a specific

line
●​ [r] or run //Run the code until you hit the first breakpoint
●​ [n] or next //Execute the next line of code
●​ [s] or step //Step into a function
●​ [bt] or backtrace //Show call stack

1 For more commands see this gdb cheatsheet:
https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

4

2.​ Copy Constructor: What does a proper copy constructor,
Complex(const Complex& other), need to do to avoid
sharing? Draw the stack and heap for Complex y = x with a
proper deep copy.

A.​ Copy the pointer value directly (data = other.data)
B.​ Allocate new memory and copy the values

 data = new double[2];
 data[0] = other.data[0];
 ...

C.​ Set data to nullptr
D.​ Free other.data before copying

5

C/C++

3.​ Copy Assignment Operator: For y = x (where y already exists),
what must operator= do with y’s old data?

int foo() {
 Complex x(3.0, 4.0); // Create x
 Complex y(1.0, 2.0); // Create y with
 // different value
 y = x; //Calls copy-assignment operator
 y.setReal(5.0);
 x.print(); // ?
 y.print(); // ?
 return 0;
} // Objects destroyed here

Draw the heap before and after the assignment (y = x;). Do you see
any issues if the default assignment operator were used?

Rule of Three in C++ states that if a class defines one (or more) of the
Big three special member functions, it should explicitly define all three to
ensure proper resource management.

6

	Handout: The Big Three: Crafting STL-Like Classes
	Complex Class (No Dynamic Memory)
	Complex Class (With Dynamic Memory)
	Activity 1: Memory Diagrams with Defaults

