
ITERATORS:
AN ADT SPECIALIZED FOR TRAVERSAL

Problem Solving with Computers-II

Recursive vs. Iterative traversal of a BST

2

Iterative: offered by std::set

20
30

25

40

35 60

void bst::printInorder(Node *r) const{
 if (!r) return;
 printInorder(r->left);
 cout << r->data << " ";
 printInorder(r->right);
}

for (int x : s) {
 cout << x << " ";
}

Why doesn’t std::set have a printInorder() function?

std::set<int> s =
{30, 20, 25, 40,35, 60};

Recursive in order: printInorder

Our goal: Implement one-at-a-time navigation for custom BST

3

20
30

25

40

35 60

What you write…

std::set<int> s = {. . .}
for (int x : s) {
 cout << x << " ";
}

for (std::set<int>::iterator it = s.begin(); it != s.end(); ++it) {
 cout << *it << " ";
}

What actually happens:

Roadmap to implementing one at-a-time navigation for bst class

4

20
30

25

40

35 60

(1) Implement helpers: getmin and successor

 Node* r = b.getmin(root);
 while(r){
 cout << r->data << " ";
 r = b.successor(r);
 }

Are we done? Why/why not? - Discuss (2 mins)

Roadmap to implementing one at-a-time navigation for bst class

5

20
30

25

40

35 60

(1) Implement helpers: getmin and successor

(2) Implement a new ADT called iterator
that abstracts a traversal pointer!!!

 iterator it;
 *it = ____ (data)
 ++it; // Moves to ____

Discuss (2 mins):
What functions does iterator ADT need to allow operations like *it and ++it?

 Task 1: Implement two useful functions: getmin and successor

6

getmin(root): returns pointer to Node with minimum value
successor(n): returns pointer to the next Node (after n) in an in order traversal

Nodes visited in an inorder traversal:
20, 25, 30, 35, 40, 60

20
30

25

40

35 60

7

42

32

23

4520

50

48

80

70

60

90

Discover the algo for successor

8

Your turn (10 min): Work through handout 1.1-1.3
Task 1.1: Implement getmin to return the
leftmost node in a subtree.

Node* bst::getmin(Node* r) const {
 // Fill in the code

}

Task 1.2: Discover the Successor Algorithm

Consider BST with keys masked by labels: A
 / \
 B C
 \ / \
 D E F

Succesor of A? _______

Successor of D? ______

What steps did you take in each case?

Task 1.3: Implement successor
Node* bst::successor(Node* r) const {
 // Fill in the code

}

9

Brainstorm next steps

 Node* r = b.getmin(root);
 while(r){
 cout << r->data << " ";
 r = b.successor(r);
 }

Problem we encountered before: Node is private, so Node* can’t be used externally.

Big idea: Create a new ADT iterator that behaves like a traversal pointer.

We can now write an iterative traversal for bst

10

Big idea: Create a new ADT called iterator that behaves like a pointer.

20
30

25

40

35 60

bst::iterator it;
*it = ____ (data)
++it; // Moves to ____

class bst::iterator {
 public:

 private:

};

(5 min) Convert code to use iterator ADT

11

 Node* r = b.getmin(root);
 while(r){
 cout << r->data << " ";
 r = b.successor(r);
 }

Discuss: What problem(s) do you encounter?

20
30

25

40

35 60

BST Helper functions to initialize iterators
12

Task 3.1: Implement begin: Returns an iterator to the smallest node.
bst::iterator bst::begin() {
 // Fill in the code

}

Task 3.2: Implement end: Returns an iterator for “past the end.”
bst::iterator bst::end() {
 // Fill in the code

}

13

Task 4.1: Implement operator*
int bst::iterator::operator*() const {
 // Fill in the code

}
Task 4.2: Implement operator++
bst::iterator& bst::iterator::operator++() {
 // Fill in the code

}
Task 4.3: Implement operator!=
bool bst::iterator::operator!=(const iterator& rhs) {
 // Fill in the code

}

 C++STL
• The C++ Standard Template Library is a handy set of three built-in
components:
• Containers: Data structures
• Iterators: Standard way to traverse containers
• Algorithms: These are what we ultimately use to solve problems

14

In this lecture, you learned how to implement an iterator for any custom ADT.
Useful for working with STL classes and writing clean code in the upcoming
assignment (PA01) where you have to implement a card game.
The big challenge is to iterate through the cards of two players in a seamless
way (no passing around pointers like Node* in the main logic of your game).
Use iterators!

Iterators: An ADT specialized for traversal
Objective: Implement an iterator for our bst class, enabling flexible, one-at-a-time
navigation like std::set. We’ll build 6–8 functions and a new iterator type,
culminating in a range-based for loop for bst. We’ll explore the successor algorithm
with a magic trick!

Example BST (use this for all tasks):
 30
 / \
 20 40
 \ / \
 25 35 60 In-order: 20, 25, 30, 35, 40, 60

Overview: Recursive vs. Iterative traversal of a BST

Last lecture, we implemented printInorder for bst.
void bst::printInorder(Node *r) const{
 if (!r) return;
 printInorder(r->left);
 cout << r->data << " ";
 printInorder(r->right);
}

Compare to how std::set’s range-based for loop iterates through keys of the bst:
std::set<int> s = {30, 20, 25, 40, 35, 60};
for (int x : s) {
 cout << x << " "; // Prints: 20 25 30 35 40 60
}

Discuss (2 mins): Why doesn’t std::set have a printInorder function?

Our goal: Implement one-at-a-time navigation for custom BST

What you write:
for (int x : s) {
 cout << x << " "; // Prints: 20 25 30 35 40 60
}

What actually happens:
for (std::set<int>::iterator it = s.begin(); it != s.end(); ++it) {
 cout << *it << " ";
}

Roadmap to achieve our goal:
1. Implement useful helpers: getmin (smallest node) and successor (next node from
a given node in an in-order traversal).

Let's assume we have the helper functions implemented correctly, then an iterative
traversal should be possible as follows:

Node* r = b.getmin(root); //assume b is an object of bst
while(r){
 cout << r->data << " ";
 r = b.successor(r);
}

Discuss (2 min): Are we done? Why or why not?

2. Big idea! Implement a new ADT (iterator) that behaves like a traversal pointer.
Draw the iterator’s ++ (move to successor) and * (get data) for node 20:

 30
 / \
 20 40
 \ / \
 25 35 60

iterator it; // Assume it
 // points to 20
*it = ____ (data)
++it; // Moves to ____

Discuss (2 min): What functions does iterator ADT need to implement to allow
operations like *it and ++it?

1

C/C++

1. Implementing getmin and successor
Implement getmin (smallest node) and successor (next node from a given node in
an in-order traversal).

Task 1.1: Implement getmin to return the leftmost node in a subtree.

Node* bst::getmin(Node* r) const {
 // Fill in the code

}

Task 1.2: Discover the Successor Algorithm
Consider BST with keys masked by labels:

 A
 / \
 B C
 \ / \
 D E F

Write the label in each case:

Succesor of A? _______

Successor of D? _______

What steps did you take to find A's successor? Describe the pattern

What steps did you take to find D’s successor? Describe the pattern.

2

C/C++

C/C++

Task 1.3: Implement successor (next node that appears in an in-order traversal).

Node* bst::successor(Node* r) const {
 // Fill in the code

}

Question: What should successor return for the maximum node (F)? Why?

Task 2.1 Brainstorm next steps

We can now write an iterative traversal (milestone one achieved)

Node* r = b.getmin(root); //Assume b is an object of bst
while(r){
 cout << r->data << " ";
 r = b.successor(r);
}

But there is a problem! Node is private, so Node* can’t be used externally.

Big idea: Create a new ADT iterator that behaves like a traversal pointer

Iterator: An iterator is an abstract data type (ADT) that acts like a cursor, providing a
simple and controlled way to traverse a data structure, such as a BST, one element at a
time. It hides the internal details of the data structure (like nodes and pointers) and
supports pointer-like operations (e.g., ++ to move to the next element, * to access the
current element) to navigate through a data structure.

3

C/C++

2. Iterator Class Definition
Big idea: Create a new ADT iterator that behaves like a traversal pointer.
Define the iterator class, including its constructor (implemented outside).
It needs to store two pointers:

- Node* curr: Tracks the current node.
- bst* tree: Allows calling successor, a bst method.

class bst::iterator {

 public:
 iterator(Node* p = nullptr, bst* ptr_tree = nullptr){

 }
 // Member functions: overloaded *, ++, and != operators

 private:
 // Member variables

};

4

C/C++

C/C++

(2min) Now, convert this code to use the iterator ADT instead of Node*.
 Discuss any problems that you encounter.

//Assume b is an object of bst
Node* r = b.getmin(root);
while(r){
 cout << r->data << " ";
 r = b.successor(r);
}

Write your code that uses iterator class

3. Implementing begin and end (new bst functions)

Task 3.1: Implement begin: Returns an iterator to the smallest node.

bst::iterator bst::begin() {
 // Fill in the code

}

Task 3.2: Implement end: Returns an iterator for “past the end.” This just
means iterator that stores a nullptr for the given BST

bst::iterator bst::end() {
 // Fill in the code

}

5

C/C++

C/C++

C/C++

4. Implementing Iterator Operators
Implement iterator’s operators: * (get data), ++ (move to successor), and !=
(compare).

Task 4.1: Implement operator*

int bst::iterator::operator*() const {
 // Fill in the code

}

Task 4.2: Implement operator++

bst::iterator& bst::iterator::operator++() {
 // Fill in the code

}

Task 4.3: Implement operator!=

bool bst::iterator::operator!=(const iterator& rhs) {
 // Fill in the code

}

If everything is implemented correctly, this code should work!

6

C/C++

C/C++

Long form of the range-based for loop

bst::iterator it = mybst.begin();
while (it != mybst.end()) {
 cout << *it << " ";
 ++it;
}

Short-hand version of range-based for loop!

bst mybst; // Contains {30, 20, 25, 40, 35, 60}
for (auto e: mybst) {
 cout << e << " ";
}

Summary: The C++ Standard Template Library is a handy set of three built-in
components:

● Containers: Data structures
● Iterators: Standard way to traverse containers
● Algorithms: These are what we ultimately use to solve problems

In this lecture, you learned how you can implement an iterator for any custom Abstract
Data Type. Useful for working with STL classes and writing clean code in the upcoming
assignment (PA01) where you have to implement a card game. The big challenge is to
iterate through the cards of two players in a seamless way (no passing around pointers
like Node* in the main logic of your game). Use iterators!

7

