ITERATORS:
AN ADT SPECIALIZED FOR TRAVERSAL

Problem Solving with Computers-II C++

a
osind ©




Recursive vs. lterative traversal of a BST

Recursive in order: printInorder lterative: offered by std: :set
void bst::printInorder(Node *r) const{ std::set<int> s =
if ('r) return; {30, 20, 25, 40,35, 60};
printInorder(r—>left); for (int x : s) {

cout << r—>data << " "; cout << x << " n;
printInorder(r—>right); )
} “E!:,) ('ii:,)

Why doesn’t std::set have a printInorder() function?



Our goal: Implement one-at-a-time navigation for custom BST

What you write...

std::set<int> s =
for (int x : s) {
cout << x << " "

{. ..}

}

What actually happens:

for (std::set<int>::iterator it
cout << k1t << " ":

s.begin(); it !'= s.end(); ++it) {



Roadmap to implementing one at-a-time navigation for bst class

(1) Implement helpers: getmin and successor

Nodex r = b.getmin(root);
while(r){
cout << r-—>data << " ":

r = b.successor(r);

| ) @) @

Are we done? Why/why not? - Discuss (2 mins)



Roadmap to implementing one at-a-time navigation for bst class

(1) Implement helpers: getmin and successor

(2) Implement a new ADT called iterator
that abstracts a traversal pointer!!!

iterator it;
xit = (data) @ @

++it; // Moves to

Discuss (2 mins):
What functions does iterator ADT need to allow operations like *it and ++it?



Task 1: Implement two useful functions: getmin and successor

getmin(root): returns pointer to Node with minimum value
successor(n): returns pointer to the next Node (after n) in an in order traversal

Nodes visited in an inorder traversal:

20, 25, 30, 35, 40, 60



Discover the algo for successor



s O
Your turn (10 min): Work through handout 1.1-1.3

Task 1.1: Implement getmin to return the Task 1.3: Implement successor

leftmost node in a subtree. Node* bst::successor(Node* r) const {

// Fill in the code
Node* bst::getmin(Node* r) const {

// Fill in the code

}

Task 1.2: Discover the Successor Algorithm

Consider BST with keys masked by labels: A
Succesor of A? / \
S fD? 5 ¢
uccessor of D7
— A\ /N }
What steps did you take in each case? D E F



L
Brainstorm next steps

We can now write an iterative traversal for bst

Nodex r = b.getmin(root);
while(r){
cout << r—>data << " ";
r = b.successor(r);

}

Problem we encountered before: Node is private, so Node* can’'t be used externally.

Big idea: Create a new ADT iterator that behaves like a traversal pointer.



Big idea: Create a new ADT called iterator that behaves like a pointer.

class bst::iterator {

public:

private: @ @ @

) bst::1iterator it;
xit = (data)
++it; // Moves to



(5 min) Convert code to use iterator ADT

Nodex r = b.getmin(root);
while(r){
cout << r—>data << " ";
r = b.successor(r);

}

Discuss: What problem(s) do you encounter?



BST Helper functions to initialize iterators

Task 3.1: Implement begin: Returns an iterator to the smallest node.

bst::iterator bst::begin() {
// Fill in the code

}

Task 3.2: Implement end: Returns an iterator for “past the end.”

bst::iterator bst::end() {
// Fill in the code



Task 4.1: Implement operator*

int bst::iterator::operator*() const {
// Fill in the code

}
Task 4.2: Implement operator++

bst::iterator& bst::iterator::operator++() {
// Fill in the code

}
Task 4.3: Implement operator!=

bool bst::iterator::operator!=(const iterator& rhs) {
// Fill in the code



C++STL

- The C++ Standard Template Library is a handy set of three built-in
components:
- Containers: Data structures
- lterators: Standard way to traverse containers
» Algorithms: These are what we ultimately use to solve problems

In this lecture, you learned how to implement an iterator for any custom ADT.
Useful for working with STL classes and writing clean code in the upcoming

assignment (PAO1) where you have to implement a card game.
The big challenge is to iterate through the cards of two players in a seamless
way (no passing around pointers like Node* in the main logic of your game).

Use iterators!



lterators: An ADT specialized for traversal

Objective: Implement an iterator for our bst class, enabling flexible, one-at-a-time
navigation like std: : set. We'll build 6-8 functions and a new iterator type,
culminating in a range-based for loop for bst. We'll explore the successor algorithm
with a magic trick!

Example BST (use this for all tasks):

30
/ \
20 40
\ / \
25 35 60 In-order: 20, 25, 30, 35, 40, 60

Overview: Recursive vs. lterative traversal of a BST

Last lecture, we implemented printInorder for bst.
void bst::printInorder(Node *r) const{
if (!'r) return;
printInorder(r->left);
cout << r->data << " ";
printInorder(r->right);

Compare to how std: : set’s range-based for loop iterates through keys of the bst:
std::set<int> s = {30, 20, 25, 40, 35, 60};
for (int x : s) {
cout << x << " ":; // Prints: 20 25 30 35 40 60
}

Discuss (2 mins): Why doesn’t std: :set have a printInorder function?



Our goal: Implement one-at-a-time navigation for custom BST

What you write:
for (int x : s) {

cout << x << " ": // Prints: 20 25 30 35 40 60
}

What actually happens:
for (std::set<int>::iterator it = s.begin(); it != s.end(); ++it) {

cout << *it << :

Roadmap to achieve our goal:
1. Implement useful helpers: getmin (smallest node) and successor (next node from
a given node in an in-order traversal).

Let's assume we have the helper functions implemented correctly, then an iterative
traversal should be possible as follows:

Node* r = b.getmin(root); //assume b is an object of bst
while(r){

cout << r->data << " ";

r = b.successor(r);

}

Discuss (2 min): Are we done? Why or why not?

2. Big idea! Implement a new ADT (iterator) that behaves like a traversal pointer.
Draw the iterator’s ++ (move to successor) and * (get data) for node 20:

30 iterator it; // Assume it
/\ // points to 20
20 40 *it = ____ (data)

\ / \ ++it; // Moves to ____

25 35 660

Discuss (2 min): What functions does iterator ADT need to implement to allow
operations like *it and ++it?




1. Implementing getmin and successor

Implement getmin (smallest node) and successor (next node from a given node in
an in-order traversal).

Task 1.1: Implement getmin to return the leftmost node in a subtree.

C/CH+
Node* bst::getmin(Node* r) const {
// Fill in the code

Task 1.2: Discover the Successor Algorithm
Consider BST with keys masked by labels:

A Write the label in each case:
/ \
B C Succesor of A?
\ / \
b E F Successor of D?

What steps did you take to find A's successor? Describe the pattern

What steps did you take to find D’s successor? Describe the pattern.



Task 1.3: Implement successor (next node that appears in an in-order traversal).

C/C++
Node* bst::successor(Node* r) const {
// Fill in the code

Question: What should successor return for the maximum node (F)? Why?

Task 2.1 Brainstorm next steps

We can now write an iterative traversal (milestone one achieved)

C/C++
Node* r = b.getmin(root); //Assume b is an object of bst
while(r){

cout << r->data << " ";

r = b.successor(r);

But there is a problem! Node is private, so Node* can’t be used externally.

Big idea: Create a new ADT iterator that behaves like a traversal pointer

Iterator: An iterator is an abstract data type (ADT) that acts like a cursor, providing a
simple and controlled way to traverse a data structure, such as a BST, one element at a
time. It hides the internal details of the data structure (like nodes and pointers) and
supports pointer-like operations (e.g., ++ to move to the next element, * to access the
current element) to navigate through a data structure.



2. lterator Class Definition

Big idea: Create a new ADT iterator that behaves like a traversal pointer.

Define the iterator class, including its constructor (implemented outside).
It needs to store two pointers:

- Node* curr: Tracks the current node.
- bst* tree: Allows calling successor, a bst method.

C/C++
class bst::iterator {

public:
iterator(Node* p = nullptr, bst* ptr_tree = nullptr){

}

// Member functions: overloaded *, ++, and != operators

private:
// Member variables



(2min) Now, convert this code to use the iterator ADT instead of Node*.
Discuss any problems that you encounter.

//Assume b is an object of bst | Write your code that uses iterator class

Node* r = b.getmin(root);
while(r){
cout << r->data << " ";
r = b.successor(r);

3. Implementing begin and end (new bst functions)

Task 3.1: Implement begin: Returns an iterator to the smallest node.

e
bst::iterator bst::begin() {
// Fill in the code

Task 3.2: Implement end: Returns an iterator for “past the end.” This just
means iterator that stores a nullptr for the given BST

C/C++
bst::iterator bst::end() {

// Fill in the code




4. Implementing Iterator Operators

Implement iterator’s operators: * (get data), ++ (move to successor), and ! =
(compare).

Task 4.1: Implement operator*

C/C++
int bst::iterator::operator*() const {
// Fill in the code

Task 4.2: Implement operator++

C/Ct++
bst::iterator& bst::iterator::operator++() {
// Fill in the code

Task 4.3: Implement operator!=

C/CH++
bool bst::iterator::operator!=(const iterator& rhs) {
// Fill in the code

If everything is implemented correctly, this code should work!



Long form of the range-based for loop

C/C++
bst::iterator it = mybst.begin();
while (it != mybst.end()) {

cout << *it << " ",

++it;

Short-hand version of range-based for loop!

C/C++
bst mybst; // Contains {30, 20, 25, 40, 35, 60}
for (auto e: mybst) {

cout << e <<

)

Summary: The C++ Standard Template Library is a handy set of three built-in
components:

e Containers: Data structures
e lterators: Standard way to traverse containers
e Algorithms: These are what we ultimately use to solve problems

In this lecture, you learned how you can implement an iterator for any custom Abstract
Data Type. Useful for working with STL classes and writing clean code in the upcoming
assignment (PAO1) where you have to implement a card game. The big challenge is to
iterate through the cards of two players in a seamless way (no passing around pointers
like Node* in the main logic of your game). Use iterators!



