
ITERATORS:
AN ADT SPECIALIZED FOR TRAVERSAL

Problem Solving with Computers-II

Recursive vs. Iterative traversal of a BST

2

Iterative: offered by std::set

20
30

25

40

35 60

void bst::printInorder(Node *r) const{
 if (!r) return;
 printInorder(r->left);
 cout << r->data << " ";
 printInorder(r->right);
}

for (int x : s) {
 cout << x << " ";
}

Why doesn’t std::set have a printInorder() function?

std::set<int> s =
{30, 20, 25, 40,35, 60};

Recursive in order: printInorder

Our goal: Implement one-at-a-time navigation for custom BST

3

20
30

25

40

35 60

What you write…

std::set<int> s = {. . .}
for (int x : s) {
 cout << x << " ";
}

for (std::set<int>::iterator it = s.begin(); it != s.end(); ++it) {
 cout << *it << " ";
}

What actually happens:

Roadmap to implementing one at-a-time navigation for bst class

4

20
30

25

40

35 60

(1) Implement helpers: getmin and successor

 Node* r = b.getmin(root);
 while(r){
 cout << r->data << " ";
 r = b.successor(r);
 }

Are we done? Why/why not? - Discuss (2 mins)

Roadmap to implementing one at-a-time navigation for bst class

5

20
30

25

40

35 60

(1) Implement helpers: getmin and successor

(2) Implement a new ADT called iterator
that abstracts a traversal pointer!!!

 iterator it;
 *it = ____ (data)
 ++it; // Moves to ____

Discuss (2 mins):
What functions does iterator ADT need to allow operations like *it and ++it?

 Task 1: Implement two useful functions: getmin and successor

6

getmin(root): returns pointer to Node with minimum value
successor(n): returns pointer to the next Node (after n) in an in order traversal

Nodes visited in an inorder traversal:
20, 25, 30, 35, 40, 60

20
30

25

40

35 60

7

42

32

23

4520

50

48

80

70

60

90

Discover the algo for successor

8

Your turn (10 min): Work through handout 1.1-1.3
Task 1.1: Implement getmin to return the
leftmost node in a subtree.

Node* bst::getmin(Node* r) const {
 // Fill in the code

}

Task 1.2: Discover the Successor Algorithm

Consider BST with keys masked by labels: A
 / \
 B C
 \ / \
 D E F

Succesor of A? _______

Successor of D? ______

What steps did you take in each case?

Task 1.3: Implement successor
Node* bst::successor(Node* r) const {
 // Fill in the code

}

9

Brainstorm next steps

 Node* r = b.getmin(root);
 while(r){
 cout << r->data << " ";
 r = b.successor(r);
 }

Problem we encountered before: Node is private, so Node* can’t be used externally.

Big idea: Create a new ADT iterator that behaves like a traversal pointer.

We can now write an iterative traversal for bst

10

Big idea: Create a new ADT called iterator that behaves like a pointer.

20
30

25

40

35 60

bst::iterator it;
*it = ____ (data)
++it; // Moves to ____

class bst::iterator {
 public:

 private:

};

(5 min) Convert code to use iterator ADT

11

 Node* r = b.getmin(root);
 while(r){
 cout << r->data << " ";
 r = b.successor(r);
 }

Discuss: What problem(s) do you encounter?

20
30

25

40

35 60

BST Helper functions to initialize iterators
12

Task 3.1: Implement begin: Returns an iterator to the smallest node.
bst::iterator bst::begin() {
 // Fill in the code

}

Task 3.2: Implement end: Returns an iterator for “past the end.”
bst::iterator bst::end() {
 // Fill in the code

}

13

Task 4.1: Implement operator*
int bst::iterator::operator*() const {
 // Fill in the code

}
Task 4.2: Implement operator++
bst::iterator& bst::iterator::operator++() {
 // Fill in the code

}
Task 4.3: Implement operator!=
bool bst::iterator::operator!=(const iterator& rhs) {
 // Fill in the code

}

 C++STL
• The C++ Standard Template Library is a handy set of three built-in
components:
• Containers: Data structures
• Iterators: Standard way to traverse containers
• Algorithms: These are what we ultimately use to solve problems

14

In this lecture, you learned how to implement an iterator for any custom ADT.
Useful for working with STL classes and writing clean code in the upcoming
assignment (PA01) where you have to implement a card game.
The big challenge is to iterate through the cards of two players in a seamless
way (no passing around pointers like Node* in the main logic of your game).
Use iterators!

