ITERATORS:
AN ADT SPECIALIZED FOR TRAVERSAL

Problem Solving with Computers-||
‘::icnq nanes? L
Wa'“\:.\h S ¢ace®®

Recursive vs. lterative traversal of a BST

Recursive in order: printInorder lterative: offered by std: :set
void bst::printInorder(Node *r) const{ std::set<int> s =
if (!'r) return; {30, 20, 25, 40,35, 60};
printInorder(r—>left); for (int x : s) {

cout << r—>data << " "; cout << x << " ":
printInorder(r->right); 1
} {lE!:’ ('II:,)

Why doesn’t std::set have a printInorder() function?

Our goal: Implement one-at-a-time navigation for custom BST

What you write...
std::set<int> s = {. . .}
for (int x : s) {

cout << x << " "
}

What actually happens:

for (std::set<int>::iterator it
cout << xit << " "

s.begin(); it !'= s.end(); ++it) {

Roadmap to implementing one at-a-time navigation for bst class

Nodex r = b.getmin(root);
while(r){
cout << r—>data << " '";

r = b.successor(r):

|) @)

Are we done? Why/why not? - Discuss (2 mins)

(1) Implement helpers: getmin and successor

Roadmap to implementing one at-a-time navigation for bst class

(2) Implement a new ADT called iterator
that abstracts a traversal pointer!!!

iterator it; @
xit = Q5 (data) - @ @
\\—)

++it; // Moves to :ﬂ

(1) Implement helpers: getmin and successor

Discuss (2 mins):
What functions does iterator ADT need to allow operations like *it and ++it?

Task 1: Implement two useful functions: getmin and successor

getmin(root): returns pointer to Node with minimum value
successor(n): returns pointer to the next Node (after n) in an in order traversal

Nodes visited in an inorder traversal:

20, 25, 30, 35, 40, 60

Discover the algo for successor ,.4e suuess
\/5-0 C > K £O
=D B*

Your turn (10 min): Work through handout 1.1-1 '?iu

Task 1.3: Implement successor

Node* bst::successor(Node* r) const {
// Fill in the code

(osc v M

Task 1.1: Implement getmin to return the @&\
leftmost node in a subtree. J cod< *

Node* bst::getmin(Node* r) const {

// Fill in the code
Ywen poinker fo the lgimost
node N the eze

) €

Task 1.2: Discover the Successor Algorithm
=

Consider BST with keys masked by labels:

Succesor of A? E CCLSC \ \
B
L R

Successor of D? A (0 L

What steps did you take in each case? ﬁ F

e
Brainstorm next steps

We can now write an iterative traversal for bst

Nodex r = b.getmin(root);
while(r){
cout << r—>data << " ";
r = b.successor(r);

}

Problem we encountered before: Node is private, so Node* can’t be used externally.

Big idea: Create a new ADT iterator that behaves like a traversal pointer.

Big idea: Create a new ADT called iterator that behaves like a pointer.
R\
L2)

N\
(o @
>)
v (20 (40)

‘ ®) (3
private:

Node * <%

. sy ¢ Yee, bst::iterator it;
xit = _20 (data)
++it; // Moves to 25

class bst::iterator {
public:

(5 min) Convert code to use iterator ADT

Nodex r = b.getmin(root);
while(r)A{

cout << r—>data << " "

r = b.successor(r);

}

while (

: D) :
. |L = J)
})S’f 5 'k‘?kw' i » y$
cout & * LA C
++ H")

S

Discuss: What problem(s) do you encounter?

4. Need a woy ’m'm‘u_ halie

(Blane 0)) — (mpeme
Al

2. Need ON end

e 0
e condibion fof %ﬁmvm; e

«l“—'&ﬁ‘f “bes)) @

v stemter B Omplic

“cné() |

BST Helper functions to initialize iterators

Task 3.1: Implement begin: Returns an iterator to the smallest node.

bst::iterator bst::begin() {
// Fill in the code

\ () -
\"rerahsf(qd i ((ceor)d th .

Cerwa

}

Task 3.2: Implement end: Returns an iterator for “past the end.”

bst::iterator bst::end() {
// Fill in the code

xeumn ibererse (nollpre A0S)

€

Task 4.1: Implement operator*

. . m\“y‘“
int bst::iterator::operator*() const { 5“ Cé&‘ «‘6
// Fill in the code

aubo-
n oV

}

Task 4.2: Implement operator++

bst::iterator& bst::iterator::operator++() {
// Fill in the code

}

Task 4.3: Implement operator!=

bool bst::iterator::operator!=(const iterator& rhs) {
// Fill in the code

C++STL

- The C++ Standard Template Library is a handy set of three built-in
components:
- Containers: Data structures
- lterators: Standard way to traverse containers
* Algorithms: These are what we ultimately use to solve problems

In this lecture, you learned how to implement an iterator for any custom ADT.
Useful for working with STL classes and writing clean code in the upcoming
assignment (PAO1) where you have to implement a card game.

The big challenge is to iterate through the cards of two players in a seamless
way (no passing around pointers like Node* in the main logic of your game).

Use iterators!

