

BINARY SEARCH TREES

Problem Solving with Computers-II

To manage the buy/sell order book, which data structure should we use?

Imagine you’re designing a system for a stock exchange.

Real-Time System: Traders submit
buy/sell orders in real-time —
thousands per second.

Order Book: List of buy orders,
sorted by price (highest to lowest),
matches orders at the same price.

Key Operations: Insert new orders,
search for matches, print in sorted
order, find the best price.

To manage the buy order book, which data structure should we use?
The system needs to handle a stream of new orders, search for prices to match
trades, print orders in sorted order, and find the best price—all as fast as possible.

Discuss with your peers and vote for the best option:

A) Unsorted Vector: Add orders with push_back, search with std::find, sort when printing.

B) Sorted Vector: Add orders, re-sort after each addition, search with std::binary_search.

C) std::set: Add orders with insert, search with find, print in order, get best price with begin().

D) Array: Fixed-size array, manually manage sorting and searching.

E) More than one options works!

Binary Search Trees (std::set)
• What are the operations supported?

• What are the running times of these operations?

• How do you implement the BST i.e. operations supported by it?

5

https://cplusplus.com/reference/set/set/?kw=set

https://cplusplus.com/reference/set/set/?kw=set

Which of the following is/are a tree?

A. B.

C.

D. A & B

E. All of A-C

6

Binary Trees
7

42

45

12

32

41 50

In a tree, nodes are arranged in a heirarchy
• One node is distinguished as the root
• Each node:

• stores a key
• has a pointer to child nodes and

parent (optional)
• Unique path between any two nodes
• Leaf nodes have no children

In a binary tree, each node has at most
___________ children

struct TreeNode {

 TreeNode* left;
 TreeNode* right;
 TreeNode* parent;
 int const data;

 TreeNode(int d) : data(d) {
 left = right = parent = nullptr;
 }
};

8

Binary Search Tree – What is it?

42

32

12

45

41 50

9

std::set does not store duplicate values
Do the keys have to be integers?

BST is a binary tree where each node
satisfies the Search Tree Property

For any node,
Keys in node’s left subtree < Node’s key <
Keys in node’s right subtree

Which of the following is/are a binary search tree?

42

32

12

42

3212

42

3212 65

30 38

A. B.

42

32

12

56

45

D.

C.

E. More than one of these

11

BSTs of different heights are possible with the same set of keys
Examples for keys: 12, 32, 41, 42, 45

• Path – a sequence of (zero or more) connected nodes.
• Length of a path - number of edges traversed on the path
• Height of node – Length of the longest path from the node to a leaf node.
• Height of the tree - Length of the longest path from the root to a leaf node.

BSTs allow efficient search!

12

• Start at the root;
• Trace down a path by comparing k with the key of

the current node x:
• If the keys are equal: we have found the key

• If k < key[x] search in the left subtree of x

• If k > key[x] search in the right subtree of x
• What is the running time of search?

Search for 41, then search for 53

42

32

12

45

41 50

13

Insert
• Insert 40
• Search for the key
• Insert at the spot you expected to find it
• What is the running time of insert?

42

32

12

45

41 50

14

Min/Max
Which of the following describes the algorithm to
find the maximum value in the BST?

A. Return the root node’s value

B. Follow right child pointers from the root, until a node
with no right child is encountered, return that node’s key

C. Follow left child pointers from the root, until a node
with no left child is encountered, return that node’s key

42

32

12

45

41 50

Define the BST ADT

42

32

12

45

41

Operations
Search
Insert
Min
Max
Successor (next largest key)
Predecessor (next smaller key)
Delete
Print elements (3 variations)

Write a function to create a small BST manually (not using insert!)

16

In order traversal: print elements in sorted order

42

32

12

45

41 50

Algorithm Inorder(tree)
 If tree is empty, return
 Traverse the left subtree, i.e., call Inorder(left-subtree)
 Visit the root.
 Traverse the right subtree, i.e., call Inorder(right-subtree)

Write a member function for the BST ADT to compute its height

int bst::getHeight(Node*) const{
 return getHeight(root); // Implement the helper recursively
} // returns the height of the tree

