BINARY SEARCH TREES

Problem Solving with Computers-I| C | '
Lon 4105::53:&
‘\:‘::nq nase=? A
wa*“‘l.\ 13 e

Imagine you’re designing a system for a stock exchange.

Real-Time System: Traders submit

STOCK buy/sell orders in real-time —
MARKET thousands per second.

Order Book: List of buy orders,
sorted by price (highest to lowest),
matches orders at the same price.

Key Operations: Insert new orders,
search for matches, print in sorted
order, find the best price.

BUY SELL
“I'll buy “'ll sell
100 shares 50 shares
at $150” at $150”

|

ORDER BOOK

SHARES PRICE
200 155
150 152
100 150

To manage the buy/sell order book, which data structure should we use?

To manage the buy order book, which data structure should we use?

The system needs to handle a stream of new orders, search for prices to match
trades, print orders in sorted order, and find the best price—all as fast as possible.

Discuss with your peers and vote for the best option:

O0) O(N)
A) Unsorted Vector: Add ordgrs with ptgsh back, search with std::find, sort whe pr:\r;&ng
log
B) Sorted Vector: Add orders, re- sort after each addition, search with std::binary_search.
O(logw) OCloeN) OHLN)
std: set Add orders with insert, search with find; print in order, get best price with begin().
e " —_— pE—N
D) Array: Fixed-size array, manually manage sorting and searchin 7
),{ylx iz y ually g ing ing. IS

E) More than one options works! Odps nN)

T

Scaling of Worst-Case Find Operations

10“'E - Unsorted Vector (O(n)) FE ST, pE
| == Sorted Vector (O(log n)) - 'b | o O
1 === Set (Balanced BST, O(log n))

=
o
w

Operations (Time Units)
(=]
o

=
o
[

1003. .

10! 102 103 104 10°
Number of Elements (n)

5
Binary Search Trees (std::set)

- What are the operations supported? https://cplusplus.com/reference/set/set/?kw=set

4

* What are the running times of these operations?

- How do you implement the BST i.e. operations supported by it?

Y ks

https://cplusplus.com/reference/set/set/?kw=set

WM

Which of the following is/are a tree? o Lifked Us

chilaced
—_—

D.A&B

E. All of A-C

7

Binary Trees In a tree, nodes are arranged in a heirarchy

Crocks excirnens & P“’Z"m‘h b““u * One node is distinguished as the root

Each node:
- stores alkey |
* has a pointer to child nodes and

parent (optional)
Unique path between any two nodes
Leaf nodes have no children

~ In a binary tree, each node has at most
Ao ee=children

‘5NWW9 faﬁﬂﬂ*

struct TreeNode {
Cg——

TreeNode* left;
TreeNode* right; Zk§
TreeNode* parent; \

int const Key
c =

TreeNode (int d) : data(d) {
left = right = parent = nullptr;
}
};

f33k+

7,09 S

Binary Search Tree — What is it?

BST is a binary tree where each node
satisfies the Search Tree Property

For any node,
Keys in node’s left subtree < Node’s key <
Keys in node’s right subtree

key (T (x)) < ey (rD < ke‘d-BCTQ,U‘))
s (o

]lL\31\) H?—\ qg\ £o \
std::set does not store duplicate values

L <
Do the keys have to be integers? Soxied \lech(%

Which of the following is/are a binary search tree?

Path — a sequence of (zero or more) connected nodes.

Length of a path - number of edges traversed on the path

Height of node — Length of the longest path from the node to a leaf node.
Height of the tree - Length of the longest path from the root to a leaf node.

k2, 4<, Yy, 5

L

s~

® ®
,Hejsl«l';'z—

o b

Pus\mﬁ';. 3

BSTs of different heights-are_possible with the same set of keys
Examples for keys:@@@@
A |

2

BSTs allow efficient search! Tnpwr ked t o Seoeda Y

- Start at the root;

- Trace down a path by comparing k with the key of

the current node x:
If the keys are equal: we have found the key
If k < key[x] search in the left subtree of x

If k > key[x] search in the right subtree of x
What is the running time of search? O G\" W

Search for 41, then search for 53

*Insert 40

- Search for the key

- Insert at the spot you expected to find it
-What is the running time of insert? O(H)

B
Min/Max

¥ Which of the following describes the algorithm to
find the maximum value in the BST?

‘F"F A. Return the root node’s value

FoIIow right child pointers from the root, until a node
with no right child is encountered, return that node’s key

? C. Follow left child pointers from the root, until a node
with no left child is encountered, return that node’s key

Define the BST ADT

Operations
Search

Insert

Min
Max e
Successor (next largest key)

Predecessor (next smaller key)
Delete Q °
Print elements (3 variations)

Write a function to create a small BST manually (not using insert!)

In order traversal: print elements in sorted order

e Algorithm Inorder(tree)
If tree is empty, return
@ @ Traverse the left subtree, i.e., call Inorder(left-subtree)
Visit the root.

Traverse the right subtree, i.e., call Inorder(right-subtree)

Write a member function for the BST ADT to compute its height

int bst::getHeight(Nodex) const{
return getHeight(root); // Implement the helper recursively
} // returns the height of the tree

Quse coot - -, -\
€N
ook | / e
O
ehrufn
P wor =) < ¢

— "(V\O'L(’»\‘I \\1'.) -\-‘

AANGE

TelY)

