
PRIORITY QUEUES & BINARY HEAP
Problem Solving with Computers-II

Lecture handout
https://bit.ly/CS24-binaryheap

1

NavigationData Compression Network Design

https://bit.ly/CS24-binaryheap

Annoucements
• PA01 — extended deadline to next Friday 05/16
• Upcoming lab: implement a priority queue as a binary heap
• Midterm on Thursday (05/07)
• Extra office hours today after lecture

• TA/LA Group office hours 2p - 3p in HFH 1152
• Professor OH, 2p - 4p in HFH 1155 (instead of Thursday OH)

2

 \ | /
Algorithms: Huffman Coding Shortest Path Minimum Spanning Tree
 \ | /
ADT: Priority Queue
 |
Data structure: Binary Heap
 |
 Complete Binary Tree
 |
 Vector

Many algorithms need to compute the min OR max repeatedly.
Priority Queue is used to speed up the running time!

Google Maps NavigationData Compression

3

Network Design

C++ Priority Queue Airport Priority Boarding ≡
4

priority_queue<int> pq;

// New passengers arrivals
pq.push(20);
pq.push(20);
pq.push(80);
pq.push(50);
pq.push(100);

// Whose boarding next?
cout << pq.top();

// Next passenger to board
pq.pop();

 priority_queue ADT is implemented as a Binary Heap Tree
5

Think of binary heap as a heap of presents!!

(1) Shape property:

(2) Heap property :

Two important properties of a binary heap tree

1

2

20

3

5 7 10

70 30 6 7

In a min-heap, for each node (x):
key(x) <= key(children of x)

7

1

2

20

3

5 7 10

70 30 6 7

(1) Shape property:

Internally, a heap is a complete binary
tree, where each node satisfies the heap
property

(2) Heap property:

Example of a min-heap

Two important properties of a binary heap tree

In a max-heap, for each node (x):
key(x) >= key(children of x)

8

70

20

10

30

6 7 3

7 1 5 2

(1) Shape property:

Internally, a heap is a complete binary
tree, where each node satisfies the
heap property

(2) Heap property:

Example of a max-heap

Two important properties of a binary heap tree

Identifying heaps
Starting with the following min-Heap which of the following
operations will result in something that is NOT a min Heap

6

10

40

12

32 4743

45 41

A. Swap the keys 40 and 32
B. Swap the keys 32 and 43
C.Swap the keys 43 and 40
D. Insert 50 as the left child of 45
E. C&D

9

Insert into a min heap: push(50), push(35), push(8)
• Insert key x, preserving the complete structure of the heap : O(1) — why?
• If the heap property is not violated - Done
• Else “bubble up” key x (swapping with its parent’s key) until the heap property is

restored.

6

10

40

12

32 4743

45 41

pop(): delete the key at the top()
• Replace the root with another node to preserve the complete structure of heap: O(1)
• “Bubble down” i.e. swap keyof node with child that has the smallest key value until

the heap property is restored

6

10

40

8

32 4712

45 41 50 35 43

procedure push(x: key value)
 insert x in the first open spot in the tree
 while(x has a parent && parent(x) > x): //Bubble up!

swap(x, parent(x))
 done

Practice inserting the values 20, 5, 7, 1, 3, 2 into an initially empty
min-heap. But instead of drawing the results as a tree, draw the
resulting vector that represents the binary heap tree

12

procedure max(a1,a2, … an: integers)

 max:= a1

 for i:= 2 to n

 if max < ai
max:= x

return max{max is the greatest element}

A. O(1)

B. O(log n)
C. O(n)
D. O(n2)

E. None of the above

What is the best case Big-O running time of max?

