Lecture handout

https://bit.1y/CS24-binaryheap

PRIORITY QUEUES & BINARY HEAP

Problem Solving with Computers-l|

Huffman Encoding

J

»—-»—-»—Aoo’@/

Data Compression

Goleta West Sanitary
District Office

UC Santa Barbara

Police Department

UCSB)izansportation
Service§

Goleta Slough
State Marine
Conservation

QCaesar Uyesaka Stadium rea

Parking]Lot 50
UCSB Department
QLot 30 of Recreation

) 9 Loﬂﬁo
QSan Cléiente Villages

US Army ROTC Q

tel Norte
Carmpbell ”3”9 QPhers Hall
d
2 UCSB Parking Lonoo Henley) Ga(e@ @
Lot27 .
B S 9 = ONorth Hall D)
Kavli Insfitate for
Department of PhySICSQ Theoretical Physics
University of Ca[ifurnia,g
‘Santa Barbara ucsB Libraryo

Navigation

Above All Av

Planning Fiber Routes

8cote fiber
24 core fiber

35 core fiber

72 core fiber ring,
144 core fiber fing

Fiber as buit

25m Loops

Network Design


https://bit.ly/CS24-binaryheap

2
Annoucements

e PA01 — extended deadline to next Friday 05/16
 Upcoming lab: implement a priority queue as a binary heap
e Midterm on Thursday (05/07)
e Extra office hours today after lecture
 TA/LA Group office hours 2p - 3p in HFH 1152
* Professor OH, 2p - 4p in HFH 1155 (instead of Thursday OH)



110
00000000000000

g 0 0

11 1

00000
11

Data Comression Google Maps Naoviﬁgatioﬁ Network 6e3|g
Algorithms: Huffman éoding Shorte:!;t Path Minimum Sp;nning Tree
ADT: \ Priority Queue I
Data structure: Binary Heap

Complete Binary Tree

Vector

Many algorithms need to compute the min OR max repeatedly.
Priority Queue is used to speed up the running time!



C++ Priority Queue

BOARDING
GATE -

Business

(80)

Economy
(50)

Economy
(20)

Airport Priority Boarding

priority_queue<int> pq;

// New passengers arrivals

pg.push(20);
pq.push(20);
pg.push(80);
pg.push(50);
pg.push(100);

// Whose boarding next?
cout << pq.top();

// Next passenger to board
pg.pop();




priority _queue ADT is implemented as a Binary Heap Tree

l7rs vesi
FPHI P

o BET)
B

Think of binary heap as a heap of presents!!



L
Two important properties of a binary heap tree

e ’ e (1) Shape property:

@ e 6 @ (2) Heap property :
VIO



Two important properties of a binary heap tree
(1) Shape property:

Internally, a heap is a complete binary
tree, where each node satisfies the heap
property

(2) Heap property:

In a min-heap, for each node (x):
key(x) <= key(children of x)

Example of a min-heap



L
Two important properties of a binary heap tree

Example of a max-heap

(1) Shape property:

Internally, a heap is a complete binary
tree, where each node satisfies the
heap property

(2) Heap property:

In a max-heap, for each node (x):
key(x) >= key(children of x)



ldentifying heaps

Starting with the following min-Heap which of the following
operations will result in something that is NOT a min Heap

A. Swap the keys 40 and 32 °

B. Swap the keys 32 and 43 @ @
C.Swap the keys 43 and 40

D.Insert 50 as the left child of 45 @ e @ e
E.C&D




Insert into a min heap: push(50), push(39), push(8)

* Insert key x, preserving the complete structure of the heap : O(1) — why?
* |If the heap property is not violated - Done
« Else “bubble up” key x (swapping with its parent’s key) until the heap property is

restored.



L
pop(): delete the key at the top()

» Replace the root with another node to preserve the complete structure of heap: O(1)

* “Bubble down” i.e. swap keyof node with child that has the smallest key value until
the heap property is restored



Practice inserting the values 20, 5, 7, 1, 3, 2 into an initially empty
min-heap. But instead of drawing the results as a tree, draw the
resulting vector that represents the binary heap tree

procedure push(x: key value)
insert x in the first open spot in the tree

while(x has a parent && parent(x) > x): //Bubble up!
swap(x, parent(x))
done




procedure max(ai:,az, .. an: integers)
max.= ai
for 1:= 2 to n

1T max < aj
max:= X

return max{max is the greatest element}

What is the best case Big-O running time of max?
A 1)
log n)

n)

. O(n2)

. None of the above

e
2. Of
c. Of
D
E



