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PRIORITY QUEUES & BINARY HEAP
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2
Annoucements

e PA01 — extended deadline to next Friday 05/16
 Upcoming lab: implement a priority queue as a binary heap
e Midterm on Thursday (05/07)
e Extra office hours today after lecture
 TA/LA Group office hours 2p - 3p in HFH 1152
* Professor OH, 2p - 4p in HFH 1155 (instead of Thursday OH)



110
00000000000000

g 0 0

11 1

00000
11

Data Comression Google Maps Naoviﬁgatioﬁ Network 6e3|g
Algorithms: Huffman éoding Shorte:!;t Path Minimum Sp;nning Tree
ADT: \ Priority Queue I
Data structure: Binary Heap

Complete Binary Tree

Vector

Many algorithms need to compute the min OR max repeatedly.
Priority Queue is used to speed up the running time!



C++ Priority Queue
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Airport Priority Boarding

priority_queue<int> pq;

// New passengers arrivals

pg.push(20);
pq.push(20);
pg.push(80);
pg.push(50);
pg.push(100);

// Whose boarding next?
cout << pq.top();

// Next passenger to board
pg.pop();




priority _queue ADT is implemented as a Binary Heap Tree
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Think of binary heap as a heap of presents!!
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Two important properties of a binary heap tree

e ’ e (1) Shape property:

@ e 6 @ (2) Heap property :
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Two important properties of a binary heap tree
(1) Shape property:

Internally, a heap is a complete binary
tree, where each node satisfies the heap
property

(2) Heap property:

In a min-heap, for each node (x):
key(x) <= key(children of x)

Example of a min-heap



L
Two important properties of a binary heap tree

Example of a max-heap

(1) Shape property:

Internally, a heap is a complete binary
tree, where each node satisfies the
heap property

(2) Heap property:

In a max-heap, for each node (x):
key(x) >= key(children of x)



ldentifying heaps

Starting with the following min-Heap which of the following
operations will result in something that is NOT a min Heap

A. Swap the keys 40 and 32 °

B. Swap the keys 32 and 43 @ @
C.Swap the keys 43 and 40

D.Insert 50 as the left child of 45 @ e @ e
E.C&D




Insert into a min heap: push(50), push(39), push(8)

* Insert key x, preserving the complete structure of the heap : O(1) — why?
* |If the heap property is not violated - Done
« Else “bubble up” key x (swapping with its parent’s key) until the heap property is

restored.



L
pop(): delete the key at the top()

» Replace the root with another node to preserve the complete structure of heap: O(1)

* “Bubble down” i.e. swap keyof node with child that has the smallest key value until
the heap property is restored



Practice inserting the values 20, 5, 7, 1, 3, 2 into an initially empty
min-heap. But instead of drawing the results as a tree, draw the
resulting vector that represents the binary heap tree

procedure push(x: key value)
insert x in the first open spot in the tree

while(x has a parent && parent(x) > x): //Bubble up!
swap(x, parent(x))
done




procedure max(ai:,az, .. an: integers)
max.= ai
for 1:= 2 to n

1T max < aj
max:= X

return max{max is the greatest element}

What is the best case Big-O running time of max?
A 1)
log n)

n)

. O(n2)

. None of the above
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