
PRIORITY QUEUES & BINARY HEAP
Problem Solving with Computers-II

Lecture handout 
https://bit.ly/CS24-binaryheap
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NavigationData Compression Network Design

https://bit.ly/CS24-binaryheap


Annoucements
• PA01 — extended deadline to next Friday 05/16 
• Upcoming lab: implement a priority queue as a binary heap 
• Midterm on Thursday (05/07)  
• Extra office hours today after lecture 

• TA/LA Group office hours 2p - 3p in HFH 1152 
• Professor OH, 2p - 4p in HFH 1155 (instead of Thursday OH)
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Many algorithms need to compute the min OR max repeatedly. 
Priority Queue is used to speed up the running time!

Google Maps NavigationData Compression
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Network Design



C++ Priority Queue     Airport Priority Boarding ≡
4

priority_queue<int> pq; 

// New passengers arrivals 
pq.push(20); 
pq.push(20); 
pq.push(80); 
pq.push(50); 
pq.push(100); 

// Whose boarding next? 
cout << pq.top();  

// Next passenger to board 
pq.pop(); 



 priority_queue ADT is implemented as a Binary Heap Tree 
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Think of binary heap as a heap of presents!! 



(1) Shape property: 

(2) Heap property : 

Two important properties of a binary heap tree
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In a min-heap, for each node (x): 
key(x) <= key(children of x)
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(1) Shape property: 

Internally, a heap is a complete binary 
tree, where each node satisfies the heap 
property 

(2) Heap property: 

Example of a min-heap

Two important properties of a binary heap tree



In a max-heap, for each node (x): 
key(x) >= key(children of x)
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(1) Shape property: 

Internally, a heap is a complete binary 
tree, where each node satisfies the 
heap property 

(2) Heap property: 

Example of a max-heap

Two important properties of a binary heap tree



Identifying heaps
Starting with the following min-Heap which of the following 
operations will result in something that is NOT a min Heap
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A. Swap the keys 40 and 32 
B. Swap the keys 32 and 43 
C.Swap the keys 43 and 40 
D. Insert 50 as the left child of 45 
E. C&D
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Insert into a min heap: push(50), push(35), push(8)
• Insert key x, preserving the complete structure of the heap : O(1) — why? 
• If the heap property is not violated - Done 
• Else “bubble up” key x (swapping with its parent’s key) until the heap property is 

restored.
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pop(): delete the key at the top()
• Replace the root with another node to preserve the complete structure of heap: O(1) 
• “Bubble down” i.e. swap keyof node with child that has the smallest key value until 

the heap property is restored
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procedure push(x: key value) 
  insert x in the first open spot in the tree 
   while(x has a parent && parent(x) > x): //Bubble up! 

swap(x, parent(x)) 
  done 

Practice inserting the values 20, 5, 7, 1, 3, 2 into an initially empty 
min-heap. But instead of drawing the results as a tree, draw the 
resulting vector that represents the binary heap tree
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procedure max(a1,a2, … an: integers) 

   max:= a1 

     for i:= 2 to n 

  if max < ai  
max:= x 

return max{max is the greatest element}

A. O(1) 

B. O(log n) 
C. O(n) 
D. O(n2) 

E. None of the above

What is the best case Big-O running time of max?


