
COMPLEXITY ANALYSIS 

Problem Solving with Computers-II



Review: Big O and BST
• Big O: what does T(n) = O(f(n)) mean? 
• What are the operations in a bst and how fast do they run? 
• Std:: set vs. custom BST (lab03)



Balanced Binary Search Trees
• Definition: A Balanced tree is a tree whose height is O(log n) 

• Example of balanced BSTs: AVL trees, red black trees (std::set)  
• Visualize: https://visualgo.net/bn/bst

https://visualgo.net/bn/bst
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Balanced BST time complexity (std::set)

Given a balanced BST with n nodes, which operation(s) 
have a time complexity of O(log n)? 
A. min/max 
B. search  
C. successor 
D. All of the above 
Discuss best case/worst case for each operation
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Amortized Analysis
What is the worst case time complexity of this code?  
void printSetValues(const std::set<int>& s){ 
    for (int value : s) { 
        std::cout << value << " "; 
    } 
} 
A. O(1)  B.O(log n)  C. O(n)  D. O(nlogn)   

Note: Worst case time complexity of successor is O(log n) 
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Comparing algorithms
Which code is faster to find a key in a set (s)? 
A. bool find(const std::set<int>& s, int key){ 
     for (int value : s) { 
        if(value == key) return true; 
     } 
     return false; 
} 

B. bool find(const std::set<int>& s, int key){ 
     set<int>::iterator it = s.find(key); 
     if(it != s.end()) return true 
     return false; 
} 

C. Both are equally fast!
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Finding common keys
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Given a std::set with N unique integer keys and a std::vector with M integer keys 
(not necessarily unique), you need to find all keys common to both, returning a 
std::set of the found keys. Two solutions are implemented (see handout for code): 

• Solution 1: Iterate over the M vector keys, using std::set::find to check if each 
key is in the set. 

• Solution 2: Iterate over the N set keys, using std::find on the unsorted vector 
to check if each key is in the vector.

What is the time complexity of these solutions? 

Assume the number of common keys is bounded a constant K



Finding common keys (contd)
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• Solution 1: Iterate over the M vector keys, using std::set::find to check if each 
key is in the set. 

• Solution 2: Iterate over the N set keys, using std::find on the unsorted vector 
to check if each key is in the vector.

Option Solution 1 Solution 2

A O(M * N) O(N * M)

B O(M * log N) O(N * M)

C O(M) O(N * M)

D O(M * log N) O(N * log M)

Which of the following correctly describes the time complexity of these 
solutions?



Space Complexity

F(int n){ 
   if(n <= 1) return 1 
   return F(n-1) + F(n-2) 
}

S(n) = auxiliary memory needed to compute F(n) 
    In general space complexity includes space to store inputs  + 

auxiliary space. But for this class assume auxilliary space only

What is S(n)? Express your answer in Big-O notation



F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(0)F(1)F(0)F(1)F(1)F(2)

F(1) F(0)

What is S(n)? Express your answer in Big-O notation

A. O(1) 
B. O(log(n)) 
C. O(n) 
D. O(n2) 
E. O(2n) 

Tree of recursive calls needed to compute F(5)
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S(n) relates to maximum depth of the recursion 

F(5)

F(int n){ 
   if(n <= 1) return 1 
   return F(n-1) + F(n-2) 
}

Maximum depth of the recursion for F(n) = n 
Therefore, S(n) = O(n)

F(3)

Recursive calls continue

F(2)

F(1)



Which algorithm is more space efficient?

F(int n){ 
    Initialize A[0 . . . n] 
    A[0] = A[1] = 1 
     
    for i = 2 : n 
      A[i] = A[i-1] + A[i-2] 
     
    return A[n] 
}

A.

F(int n){ 
   if(n <= 1) return 1 
   return F(n-1) + F(n-2) 
}

B. 

C. Both are the same: O(n)
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