COMPLEXITY ANALYSIS

Problem Solving with Computers-Il C++



Review: Big O and BST
* Big O: what does T(1) = 0(f{1n)) mean?

- What are the operations in a bst and how fast do they run?
- Std:: set vs. custom BST (lab03)



L
Balanced Binary Search Trees

- Definition: A Balanced tree is a tree whose height is O(log n)
- Example of balanced BSTs: AVL trees, red black trees (std::set)
* Visualize: https://visualgo.net/bn/bst
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https://visualgo.net/bn/bst

L
Balanced BST time complexity (std::set)

8 Given a balanced BST with n nodes, which operation(s)
I\ have a time complexity of O(log n)?
A.  min/max
/Lt 1/2\ B. search
5> 6 10 14 C. successor
) \ D. All of the above

Discuss best case/worst case for each operation

1 I4



Amortized Analysis
What is the worst case time complexity of this code?
8 void printSetValues(const std::set<int>& s){
[\ for (int value : s) {
4 12 std::cout << value << " "
ANEA \ ;
2 6 10 14

/ \ A. 0(1) B.O(log n) C. 0(n) D. 0(nlogn)
1 7 Note: Worst case time complexity of successor is O(log n)



L
Comparing algorithms

Which code is faster to find a key in a set (s)?

8 A. bool find(const std::set<int>& s, int key){
AR for (int value : s) {
if(value == key) return true;
4 12 1

/\ [\ return false;

2 6 10 14 '
/ \ B. bool find(const std::set<int>& s, int key){
1 / set<int>::iterator it = s.find(key);

if(it !'= s.end()) return true

return false;

C. Both are equally fast!



Finding common keys

Given a std::set with N unique integer keys and a std::vector with M integer keys
(not necessarily unique), you need to find all keys common to both, returning a
std::set of the found keys. Two solutions are implemented (see handout for code):

o Solution 1: lterate over the M vector keys, using std::set::find to check if each
key is in the set.

e Solution 2: Iterate over the N set keys, using std::find on the unsorted vector
to check if each key is in the vector.

What is the time complexity of these solutions?

Assume the number of common keys is bounded a constant K



.
Finding common keys (contd)

o Solution 1: lterate over the M vector keys, using std::set::find to check if each
key is in the set.

o Solution 2: lterate over the N set keys, using std::find on the unsorted vector
to check if each key is in the vector.

Which of the following correctly describes the time complexity of these

solutions?
Option Solution 1 Solution 2
A O(M * N) O(N * M)
B O(M * log N) O(N * M)
C O(M) O(N * M)
D O(M * log N) O(N * log M)



L
Space Complexity

S(n) = auxiliary memory needed to compute F(n)

In general space complexity includes space to store inputs +
auxiliary space. But for this class assume auxilliary space only

F(int n){
if(n <= 1) return 1
return F(n-1) + F(n-2)

}

[ What is S(n)? Express your answer in Big-O notation ]




[ What is S(n)? Express your answer in Big-O notation ]

Tree of recursive calls needed to compute F(5)

o(1)

O(log(n)) 5

O(n)

O(n2) F(4) F(3)

O(2") F3)| [F2)] [F2)] [F)

pd |

F2)|[F(1)] [F)][FO)][F(1)] [F0)
F(1)][F(0)
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S(n) relates to maximum depth of the recursion

F(int n){
if(n <= 1) return 1
return F(n-1) + F(n-2)

}

F(5)

F(2)

F(1) [ Recursive calls continue

Maximum depth of the recursion for F(n) = n
Therefore, S(n) = O(n)



Which algorithm is more space efficient?
A. B.

F(int n){
if(n <= 1) return 1

F(int n){
Initialize A[O . . .

return F(n-1) + F(n-2) Al0] = A[1] =1

}

for 1 =2 : n

Ali] = A[i-11 + A[i-2]

return A[n]

C. Both are the same: O(n) 1




