
COMPLEXITY ANALYSIS

Problem Solving with Computers-II

Review: Big O and BST
• Big O: what does T(n) = O(f(n)) mean?
• What are the operations in a bst and how fast do they run?
• Std:: set vs. custom BST (lab03)

Balanced Binary Search Trees
• Definition: A Balanced tree is a tree whose height is O(log n)

• Example of balanced BSTs: AVL trees, red black trees (std::set)
• Visualize: https://visualgo.net/bn/bst

https://visualgo.net/bn/bst

4

Balanced BST time complexity (std::set)

Given a balanced BST with n nodes, which operation(s)
have a time complexity of O(log n)?
A. min/max
B. search
C. successor
D. All of the above
Discuss best case/worst case for each operation

 8
 / \
 4 12
 / \ / \
 2 6 10 14
 / \
 1 7

5

Amortized Analysis
What is the worst case time complexity of this code?
void printSetValues(const std::set<int>& s){
 for (int value : s) {
 std::cout << value << " ";
 }
}
A. O(1) B.O(log n) C. O(n) D. O(nlogn)

Note: Worst case time complexity of successor is O(log n)

 8
 / \
 4 12
 / \ / \
 2 6 10 14
 / \
 1 7

6

Comparing algorithms
Which code is faster to find a key in a set (s)?
A. bool find(const std::set<int>& s, int key){
 for (int value : s) {
 if(value == key) return true;
 }
 return false;
}

B. bool find(const std::set<int>& s, int key){
 set<int>::iterator it = s.find(key);
 if(it != s.end()) return true
 return false;
}

C. Both are equally fast!

 8
 / \
 4 12
 / \ / \
 2 6 10 14
 / \
 1 7

Finding common keys
7

Given a std::set with N unique integer keys and a std::vector with M integer keys
(not necessarily unique), you need to find all keys common to both, returning a
std::set of the found keys. Two solutions are implemented (see handout for code):

• Solution 1: Iterate over the M vector keys, using std::set::find to check if each
key is in the set.

• Solution 2: Iterate over the N set keys, using std::find on the unsorted vector
to check if each key is in the vector.

What is the time complexity of these solutions?

Assume the number of common keys is bounded a constant K

Finding common keys (contd)
8

• Solution 1: Iterate over the M vector keys, using std::set::find to check if each
key is in the set.

• Solution 2: Iterate over the N set keys, using std::find on the unsorted vector
to check if each key is in the vector.

Option Solution 1 Solution 2

A O(M * N) O(N * M)

B O(M * log N) O(N * M)

C O(M) O(N * M)

D O(M * log N) O(N * log M)

Which of the following correctly describes the time complexity of these
solutions?

Space Complexity

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

S(n) = auxiliary memory needed to compute F(n)
 In general space complexity includes space to store inputs +

auxiliary space. But for this class assume auxilliary space only

What is S(n)? Express your answer in Big-O notation

F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(0)F(1)F(0)F(1)F(1)F(2)

F(1) F(0)

What is S(n)? Express your answer in Big-O notation

A. O(1)
B. O(log(n))
C. O(n)
D. O(n2)
E. O(2n)

Tree of recursive calls needed to compute F(5)

S(n) relates to maximum depth of the recursion

F(5)

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

S(n) relates to maximum depth of the recursion

F(5)

F(4)

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

S(n) relates to maximum depth of the recursion

F(5)

F(4)

F(3)

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

S(n) relates to maximum depth of the recursion

F(5)

F(4)

F(3)

F(2)

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

S(n) relates to maximum depth of the recursion

F(5)

F(4)

F(3)

F(2)

F(1)

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

Maximum depth of the recursion = 5

S(n) relates to maximum depth of the recursion

F(5)

F(4)

F(3)

F(2)

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

Maximum depth of the recursion = 5

S(n) relates to maximum depth of the recursion

F(5)

F(4)

F(3)

F(2)

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

Maximum depth of the recursion = 5
F(0)

S(n) relates to maximum depth of the recursion

F(5)

F(4)

F(3)

F(2)

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

Maximum depth of the recursion = 5

S(n) relates to maximum depth of the recursion

F(5)

F(4)

F(3)

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

Maximum depth of the recursion = 5

S(n) relates to maximum depth of the recursion

F(5)

F(4)

F(3)

F(1)

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

Maximum depth of the recursion = 5

S(n) relates to maximum depth of the recursion

F(5)

F(4)

F(3)

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

Maximum depth of the recursion = 5

S(n) relates to maximum depth of the recursion

F(5)

F(4)

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

Maximum depth of the recursion = 5

S(n) relates to maximum depth of the recursion

F(5)

F(4)

F(2)

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

Maximum depth of the recursion = 5

S(n) relates to maximum depth of the recursion

F(5)

F(4)

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

Maximum depth of the recursion = 5

S(n) relates to maximum depth of the recursion

F(5)

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

Maximum depth of the recursion for F(n) = n
Therefore, S(n) = O(n)

F(3)

Recursive calls continue

F(2)

F(1)

Which algorithm is more space efficient?

F(int n){
 Initialize A[0 . . . n]
 A[0] = A[1] = 1

 for i = 2 : n
 A[i] = A[i-1] + A[i-2]

 return A[n]
}

A.

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

B.

C. Both are the same: O(n)

26

