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Review: Big O and BST
*Big O: what does T(n) = 0(f{1n)) mean?

- What are the operations in a bst and how fast do they run?
- Std:: set vs. custom BST (lab03)



e
Balanced Binary Search Trees

- Definition: A Balanced tree is a tree whose height is O(log n)
- Example of balanced BSTs: AVL trees, red black trees (std::set)
- Visualize: https://visualgo.net/bn/bst

N=16,h=4



https://visualgo.net/bn/bst

Balanced BST time complexity (std::set)

v

Given a balanced BST with n nodes, which operation(s)

/’\ have a time compIeX|ty of O( Iog n)? O(Raﬂ
A. min/max
srcax
l“ B. search NA\\&) &S{- (aont 0(‘) Lo (105,0)
C. successor(no:k) {4 tl 0299

2 6&10 14 @AII ofthe above (L0 6VSk Cocme)
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Amortized Analysis

What is the worst case time complexity of this code?
e —
3 void printSetValues(const std::set<int>& s){
[\ for (int value : s) {
4 12 std::cout << value << " "; N\weys
VA \ ;
/2 ? 10 14 A. 0(1) B.0(log n) 0(n) D. 0(nlogn)
1 7 Note: Worst case time complexity of successor is O(log n)
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Comparing algorithms

Which code is faster to find a key in a set (s)?

8 A. bool find(const std::set<int>& s, int key){
AR for (int value : s) {
4 19 if(value == key) return true;
! g 0ee\y>S
[\ [\ return false; based o VIO
2 610 14 Ophom A TiRY: O
/ \ bool find(const std::set<int>& s, int key)A
1 14 set<int>::iterator it = s.find(key); &
if(it !'= s..eﬂ()) return true ’”‘05'6\3
return false; OC\D o(

= ’ﬂ\
}OP“M: Ty = OfLog™) 0CD = oty

C. Both are equally fast!



Finding common keys

Given a std::set with N unique integer keys and a std::vector with M integer keys
(not necessarily unique), you need to find all keys common to both, returning a
std::set of the found keys. Two solutions are implemented (see handout for code):

e Solution 1: Iterate over the M vector keys, using std::set::find to check if each
key is in the set.

* Solution 2: lterate over the N set keys, using std::find on the unsorted vector
to check if each key is in the vector.

What is the time complexity of these solutions?

Assume the number of common keys is bounded a constant K



I
Finding common keys (contd)

e Solution 1: Iterate over the M vector keys, using std::set::find to check if each
key is in the set.

e Solution 2: Iterate over the N set keys, using std::find on the unsorted vector
to check if each key is in the vector.

Which of the following correctly describes the time complexity of these

solutions? oot Solution 1 Solution 2 ded
ption olution olution . ,0\,\'
A O(M * N) O(N * M) ( Hmbjs‘( \)‘@A,Q,>
OM*logN)  O(N*M) o \eIe
C O(M) O(N * M)

D O(M * log N) O(N * log M)



e
Space Complexity

S(n) = auxiliary memory needed to compute F(n)

In general space complexity includes space to store inputs +
auxiliary space. But for this class assume auxilliary space only

F(int n){
if(n <= 1) return 1
return F(n-1) + F(n-2)

}

What is S(n)? Express your answer in Big-O notation




What is S(n)? Express your answer in Big-O notation

O(1)

O(log(n)) 5

O(n)

O(n2) F(4) F(3)
O(2n) F3)] [F)] [F@)] [FO)

7 /
F(2)|| F(1)| | F(1)|] F(O)]| F(1)] | F(O)

F(1)|| F(O)

Tree of recursive calls needed to compute F(5)




S(n) relates to maximum depth of the recursion

F(int n){
if(n <= 1) return 1

return F(n-1) + F(n-=2)
} F(5)
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S(n) relates to maximum depth of the recursion

F(int n){
if(n <= 1) return 1
return F(n-1) + F(n-=2)

)

F(5)

F(2)

F(1)

Recursive calls continue

Maximum depth of the recursion for F(n) = n

Therefore, S(n) = O(n)



Which algorithm is more space efficient?
A. B.

F(int n){
if(n <= 1) return 1

F(int n){
Initialize A[OQ . . .
A[0] = A[1] =1

return F(n-1) + F(n-2)

}

for 1 =2 : n

Ali] = A[i-1] + A[i-2]

A
@oth are the same: O(n) 1 return Aln]




