
GRAPH REPRESENTATION

Handout: https://bit.ly/NeuralNets-GraphRepresentation

Book your mock interview today!

https://bit.ly/NeuralNets-GraphRepresentation
https://bit.ly/NeuralNets-GraphRepresentation
https://bit.ly/NeuralNets-GraphRepresentation

Neural Networks: Biologically inspired structure

Human brain has billions of neurons

Each neuron is connected to thousands of other neurons
Neural Network: Collection of connected

neurons modeled after the brain

https://youtu.be/aircAruvnKk?feature=sharedVideo intro to neural networks:

https://youtu.be/aircAruvnKk?feature=shared

What is an artificial neuron?

If a neuron just holds a number…where does that number come from?

Terminology: the number stored in the neuron is also called its

activation value or value for short

A neuron’s activation is computed based on the activations of neurons connected to it.

Think of connections as pathways of information flow!

What decides a neuron’s value?

0

1

2

3

4

5

An example NN with 6 neurons and 9 connections

Which neurons will determine the

activation value of neuron 3?

What decides a neuron’s value?

0

1

2

3

4

5

w1

w2

w3

w5

w6

w7

w8

w9

w4

An example NN with 6 neurons and 9 connections

Compute the activation of neuron 3

The activation for a neuron is computed as the weighted sum of its input

neurons (with some adjustments).

How does a feed-forward neural network compute?

NN Terminology

• Neurons

• Connections

• Input Layer

• Hidden Layer(s)

• Output Layer

• Neuron Info: activation value, bias,

activation function

A feedforward neural network (FNN) is

the simplest type of neural network where

data flows in one direction — from input to

output — without looping back.

Input Layer Hidden Layer Output Layer

0

1

2

3

4

5

w1

w2

w3

w4

w5

w6

w7

w8

w9

How would you represent the neural net using the data structures learned so far?

NN is a set of neurons and connections

• Connections are directed (one-way)

• Connections have weights

(strength of connection)

Neural Networks as Graphs

Graph is a set of nodes (vertices) and edges

• Directed graph: Edges go one way

• Undirected graph: Edges go both ways

• Weighted graph: Edges have weights

(PA03) Model a neural network as a __________________________ graph.

0

1

2

3

4

5

w1

w2

w3

w4

w5

w6

w7

w8

w9

Graph Terminology and Notation

8

Graph G = 𝑉, 𝐸

• Vertices V = 0, 1, 2, 3, … , 𝑛 − 1 ; 𝑉 = 𝑛

• Edges E = { u, v | u ∈ 𝑉, 𝑣 ∈ 𝑉}; |𝐸| = 𝑚

Activity 1: Write the vertices and edges for the example graph

𝑉 =

𝐸 =

𝑛 =

𝑚 =

Representing vertices

9

Graph G = 𝑉, 𝐸

V = 0, 1, 2, 3, … , 𝑛 − 1

Activity 2: Your graph has vertices labeled 0 through n - 1.

What’s the best way to store the set of vertices?

A. Vector, why?

B. Hashtable, why?

C. BST, why?

D. Something else?

Consider:

1. What do you need to do with the vertices?

(Look them up? Loop through them?)

2. Does it help that the vertex labels are just 0, 1, 2, ..., n - 1?

Convince your neighbor why your pick is the best.

Representing vertices with associated info

10

struct NodeInfo {

// The value of this Node before activation.

double preActivationValue;

// The value of this Node after activation.

double postActivationValue;

double bias; //bias

// other fields associated with a neuron

};

std::vector<NodeInfo> nodes(n); // where n is known ahead of time

OR

std::vector<NodeInfo*> nodes(n);

Representing the graph using an adjacency list

11

G = (V, E)

𝑉 = {0, 1, 2, 3, 4, 5}

𝐸 = { 0,2 , 2, 3 , 2, 1 , 2, 4 , 3, 1 , 1, 4 , 1, 5 , 4, 5 }

An adjacency list is a way to represent a graph

where each vertex stores a list of its neighbors (the

ones its connected to by an edge).

Guiding question: Given a vertex (v), how efficiently

can we find all its neighbors?

Activity 3: Complete the adjacency list representation

of the example graph.

Does this look like any other data structure you have seen so far?

Representing a graph using an adjacency list

12

class graph{

 ...

 private:

vector<NodeInfo*> nodes;

 _____________________ adjlist;

};

Choose the ADT to represent adjlist

A. vector<int>

B. vector<unordered_set<int>>

C. list<vector<int>>

D. vector<list<int>>

E. set<list<int>>

What if edges had weights?

13

class graph{

 ...

 private:

vector<NodeInfo*> nodes;

 _____________________ adjlist;

};

How would you represent adjlist for a

weighted graph?

// Use when edges have no weights

vector<unordered_set<int>> adjlist;

0.5

0.20.1

0.7

0.3

0.3

0.1

0.9

adjlist

Neural Network structure for upcoming assignment

14

typedef std::vector<std::unordered_map<int, Connection> > AdjList;

class Graph {

std::vector<NodeInfo*> nodes;

AdjList adjacencyList;

};

Input Layer Hidden Layer Output Layer

0

1

2

3

4

5

w1

w2

w3

w4

w5

w6

w7

w8

w9

Understanding the Graph and NeuralNetwork classes

15

typedef std::vector<std::unordered_map<int, Connection> > AdjList;

class Graph {

 public:
 Graph();
 Graph(int size);
 // Constructors and destructor

 // TODO: graph methods
 void updateNode(int id, NodeInfo n);
 NodeInfo* getNode(int id) const;
 void updateConnection(int v, int u, double w);

 protected:
 // protected to give NeuralNetwork access

 // adjacency list containing weights for edges.
 AdjList adjacencyList;

 // vector storing node info
 std::vector<NodeInfo*> nodes;

 //Other functions
};

class NeuralNetwork : public Graph {

 public:

// Constructors and public functions

 private:

// each index of layers holds a vector which
contains the id's of every node in that layer.

 std::vector<std::vector<int> > layers;

 // contains ids of input nodes
 std::vector<int> inputNodeIds;

 // contains ids of output nodes
 std::vector<int> outputNodeIds;

// since NeuralNetwork inherits from Graph, you can imagine all of the
graph members here as well...

};

Activity 5: Draw the final neural net and its

representation in memory

16

void test_algorithm() {
 cout << "test_algorithm" << endl;
 NeuralNetwork nn(6);

 NodeInfo n0("ReLU", 0, -0.2);
 NodeInfo n1("ReLU", 0, 0.2);
 NodeInfo n2("identity", 0, 0);
 NodeInfo n3("sigmoid", 0, 0.98);
 NodeInfo n4("ReLU", 0, 0.11);
 NodeInfo n5("identity", 0, 0);

 nn.updateNode(0, n0);
 nn.updateNode(1, n1);
 nn.updateNode(2, n2);
 nn.updateNode(3, n3);
 nn.updateNode(4, n4);
 nn.updateNode(5, n5);

 nn.updateConnection(2, 1, 0.1);
 nn.updateConnection(2, 4, 0.2);
 nn.updateConnection(2, 0, 0.3);
 nn.updateConnection(5, 1, 0.4);
 nn.updateConnection(5, 4, 0.5);
 nn.updateConnection(5, 0, 0.6);
 nn.updateConnection(1, 3, 0.7);
 nn.updateConnection(4, 3, 0.8);
 nn.updateConnection(0, 3, 0.9);

 nn.setInputNodeIds({2, 5});
 nn.setOutputNodeIds({3});

}

Next lecture preclass activities

• Review pa03 tutorial: https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/

• Finish watching the neural net intro video:

https://youtu.be/aircAruvnKk?feature=shared

• Do the assigned reading: Breadth First Search and Depth First Search on

graphs.

https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://youtu.be/aircAruvnKk?feature=shared

	Slide 1: GRAPH Representation
	Slide 2: Neural Networks: Biologically inspired structure
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Graph Terminology and Notation
	Slide 9: Representing vertices
	Slide 10: Representing vertices with associated info
	Slide 11: Representing the graph using an adjacency list
	Slide 12: Representing a graph using an adjacency list
	Slide 13: What if edges had weights?
	Slide 14: Neural Network structure for upcoming assignment
	Slide 15: Understanding the Graph and NeuralNetwork classes
	Slide 16: Activity 5: Draw the final neural net and its representation in memory
	Slide 17: Next lecture preclass activities

