Handout: https://bit.ly/NeuralNets-GraphRepresentation

Book your mock interview today!

GRAPH REPRESENTATION

4o

L 2N ay
1184 UTRH

POP 10

340 (<t]

Ueea ‘Ss..:)

THE ARPA NETWORK

PDEC (949

Y podes

https://bit.ly/NeuralNets-GraphRepresentation
https://bit.ly/NeuralNets-GraphRepresentation
https://bit.ly/NeuralNets-GraphRepresentation

Neural Networks: Biologically inspired structure

O

OB, ESIOY KIS A XXX
BRI NIKEE P K XL
LITRLIN
q) k

\ O——0)
AR T _
RIS

> %‘

N QA vl/’r‘\\
SR '.\\)&04:'1.*"\\
RIS XA
LR BR K SR/

X X l’ “: [
/?m{ bx%\%\:@/)(&\&\'?l"
LIRS
17808

7/ '0{\\\'%;; \\\V/

Neural Network: Collection of connected Human brain has billions of neurons
neurons modeled after the brain Each neuron is connected to thousands of other neurons

Video intro to neural networks: https://youtu.be/aircAruvnKk?feature=shared

https://youtu.be/aircAruvnKk?feature=shared

What is an artificial neuron?

Neuron — Thing that holds a number

If a neuron just holds a number...where does that number come from?

Terminology: the number stored in the neuron is also called its
activation value or value for short

What decides a neuron’s value?

A neuron’s activation is computed based on the activations of neurons connected to it.
Think of connections as pathways of information flow!

Which neurons will determine the
activation value of neuron 3?

An example NN with 6 neurons and 9 connections

\What decides a neuron’s value®?

The activation for a neuron is computed as the weighted sum of its input
neurons (with some adjustments).

Compute the activation of neuron 3

Sigmoid Activation Function

10 — Sigmoid Function
0.8
X06}
o
Is)
1S
2041
wn
0.21
0.0

An example NN with 6 neurons and 9 connections

100 —75 =50 =25 0.0 25 5.0 7.5 10.0

How does a feed-forward neural network compute”?

Input Layer Hidden Layer Output Layer

A feedforward neural network (FNN) is
the simplest type of neural network where
data flows in one direction — from input to
output — without looping back.

NN Terminology

 Neurons

 Connections

* Input Layer

« Hidden Layer(s)

e OQutput Layer

* Neuron Info: activation value, bias,
activation function

How would you represent the neural net using the data structures learned so far?

Neural Networks as Graphs

(PAO3) Model a neural network as a graph.

NN is a set of neurons and connections Graph is a set of nodes (vertices) and edges
« Connections are directed (one-way) * Directed graph: Edges go one way
« Connections have weights » Undirected graph: Edges go both ways

(strength of connection) » Weighted graph: Edges have weights

Graph Terminology and Notation

Graph G = {V,E}
« VerticesV={0,1, 2 3,..,.n—1}|V| =n
« Edges E={(uv)|ueV,veV}; |[E|=m

Activity 1: Write the vertices and edges for the example graph
V=
E =
n =

m =

Representing vertices

Graph G = {V,E}
v={0,1,2,3,..,n— 1}

Activity 2: Your graph has vertices labeled 0 through n - 1.
What's the best way to store the set of vertices?

A. Vector, why?

B. Hashtable, why?

C. BST, why?

D. Something else?

Consider:
1. What do you need to do with the vertices?
(Look them up? Loop through them?)
2. Does it help that the vertex labels are just 0,1, 2, ..., n-1?

Convince your neighbor why your pick is the best.

.
Representing vertices with associated info

struct Nodelnfo {
// The value of this Node before activation.
double preActivationValue;
// The value of this Node after activation.
double postActivationValue;
double bias; //bias
// other fields associated with a neuron
Iy
std::vector<Nodelnfo> nodes(n); // where n is known ahead of time
OR

std::vector<Nodelnfo*> nodes(n);

Representing the graph using an adjacency list

An adjacency list is a way to represent a graph
where each vertex stores a list of its neighbors (the
ones its connected to by an edge).

G=(V,E)
V={0,1,23,4,5}
E =1{(0,2),(2,3),(2,1),(2,4),(3,1),(1,4),(1,5),(4,5)}

Guiding question: Given a vertex (v), how efficiently
can we find all its neighbors?

Activity 3: Complete the adjacency list representation
of the example graph.

Does this look like any other data structure you have seen so far?

Representing a graph using an adjacency list
class graph{
private:

vector<Nodelnfo*> nodes;

adjlist;

Choose the ADT to represent adjlist

A. vector<int>
. vector<unordered_set<int>>
list<vector<int>>
. vector<list<int>>

set<list<int>>

What if edges had weights?

class graph{

private:
vector<Nodelnfo*> nodes;

adjlist;

How would you represent adijlist for a
weighted graph?

/I Use when edges have no weights
vector<unordered_set<int>> adijlist;

adjlist

Neural Network structure for upcoming assignment

typedef std::vector<std::unordered_map<int, Connection> > AdjlList;

Input Layer Hidden Layer Output Layer

class Graph {
std::vector<Nodelnfo*> nodes;
AdjList adjacencylist;

Iy

Understanding the Graph and NeuralNetwork classes

typedef std::vector<std::unordered_map<int, Connection> > AdjList;

class Graph { class NeuralNetwork : public Graph {

public: public:

Graph();
Graph(int size);
// Constructors and destructor

// TODO: graph methods

void updateNode(int id, Nodelnfo n);
Nodelnfo* getNode(int id) const;

void updateConnection(int v, int u, double w);

protected:
// protected to give NeuralNetwork access

// adjacency list containing weights for edges.
AdjList adjacencyList;

// vector storing node info
std::vector<Nodelnfo*> nodes;

//Other functions

// Constructors and public functions

private:

// each index of layers holds a vector which
contains the id's of every node in that layer.

std::vector<std::vector<int> > layers;

// contains ids of input nodes
std::vector<int> inputNodelds;

// contains ids of output nodes
std::vector<int> outputNodelds;

// since NeuralNetwork inherits from Graph, you can imagine all of the

graph members here as well...

|3

ot a2 oot Slgorithm << end: Activity 5: Draw the final neural net and its
et representation in memory

Nodelnfo nO("ReLU", 0, -0.2);
Nodelnfo n1("RelLU", 0, 0.2);
Nodelnfo n2("identity", 0, 0);
Nodelnfo n3("sigmoid", 0, 0.98);
Nodelnfo n4("RelLU", 0, 0.11);
Nodelnfo n5("identity", 0, 0);

nn.updateNode(0, n0);
nn.updateNode(1, nl);
nn.updateNode(2, n2);

nn.updateNode(3, n3);
nn.updateNode(4, n4);
nn.updateNode(5, n5);

nn.updateConnection(2, 1, 0.1);
nn.updateConnection(2, 4, 0.2);
nn.updateConnection(2, 0, 0.3);
nn.updateConnection(5, 1, 0.4);
nn.updateConnection(5, 4, 0.5);
nn.updateConnection(5, 0, 0.6);
nn.updateConnection(1, 3, 0.7);
nn.updateConnection(4, 3, 0.8);
nn.updateConnection(0, 3, 0.9);

nn.setinputNodelds({2, 5});
nn.setOutputNodelds({3});

Next lecture preclass activities

- Review pa03 tutorial: https://ucsb-cs24.qithub.io/s25/pa/pa03-tutorial/

- Finish watching the neural net intro video:
https://youtu.be/aircAruvnKk?feature=shared

- Do the assigned reading: Breadth First Search and Depth First Search on
graphs.

https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://youtu.be/aircAruvnKk?feature=shared

	Slide 1: GRAPH Representation
	Slide 2: Neural Networks: Biologically inspired structure
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Graph Terminology and Notation
	Slide 9: Representing vertices
	Slide 10: Representing vertices with associated info
	Slide 11: Representing the graph using an adjacency list
	Slide 12: Representing a graph using an adjacency list
	Slide 13: What if edges had weights?
	Slide 14: Neural Network structure for upcoming assignment
	Slide 15: Understanding the Graph and NeuralNetwork classes
	Slide 16: Activity 5: Draw the final neural net and its representation in memory
	Slide 17: Next lecture preclass activities

