Handout: https://bit.ly/NeuralNets-GraphRepresentation

Book your mock interview today!
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Neural Networks: Biologically inspired structure
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Neural Network: Collection of connected Human brain has billions of neurons
neurons modeled after the brain Each neuron is connected to thousands of other neurons

Video intro to neural networks: https://youtu.be/aircAruvnKk?feature=shared



https://youtu.be/aircAruvnKk?feature=shared

What is an artificial neuron?

Neuron — Thing that holds a number

If a neuron just holds a number...where does that number come from?

Terminology: the number stored in the neuron is also called its
activation value or value for short



What decides a neuron’s value?

A neuron’s activation is computed based on the activations of neurons connected to it.
Think of connections as pathways of information flow!

Which neurons will determine the
activation value of neuron 3?
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An example NN with 6 neurons and 9 connections
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What decides a neuron’s value?

The activation for a neuron is computed as the weighted sum of its input
neurons (with some adjustments).

Compute the activation of neuron 3 . )
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How does a feed-forward neural network compute?

Input Layer Hidden Layer Output Layer

A feedforward neural network (FNN) is
the simplest type of neural network where
data flows in one direction — from input to
output — without looping back.

NN Terminology

 Neurons

« Connections

* Input Layer

« Hidden Layer(s)

« Output Layer

* Neuron Info: activation value, bias,
activation function

How would you represent the neural net using the data structures learned so far?



Neural Networks as Graphs

(PAO3) Model a neural network as a &Imk@z\ N@izj\!\{fb graph.

NN is a set of neurons and connections Graph is a set of nodes (vertices) and edges
- Connections are directed (one-way) » Directed graph: Edges go one way
« Connections have weights « Undirected graph: Edges go both ways

(strength of connection) * Weighted graph: Edges have weights




Graph G = {V,E} G[ = % VlE? Q

+ Vertices V = {0, 1, 2, 3,...,n— 1};|V| =
« Edges E={(u,v)|[ueV,veVy}; |E| =
EO‘Q(L\'S;%M lecm )

Activity 1: Write the vertices and edges for the example graph
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Representing vertices Nade Srfo

Graph G = {V,E}
v={0123,..,n—1}

Activity 2: Your graph has vertices labeled 0 through n - 1.
What's the best way to store the set of vertices?
Vector, why?
B. Hashtable, why?
C. BST, why?

Consider:

1. What do you need to do with the vertices?

(Look them up? Loop through them?)
D. Something else?

2. Does it help that the vertex labels are just %1, 2,..,n-1?
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I
Representing vertices with associated info

struct Nodelnfo {
P —]

// The value of this Node before activation.

double preActivationValue;

// The value of this Node after activation.
double postActivationValue;
double bias; //bias

EEEE—

// other fields associated with a neuron
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std::vector<Nodelnfo> nodes(n); // where n is known ahead of time
— e

OR

std::vector<Nodelnfo*> nodes(n);



Representing the graph using an adjacency list

An adjacency list is a way to represent a graph
where each vertex stores a list of its neighbors (the
ones its connected to by an edge).
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Guiding question: Given a vertex (v), how efficiently
can we find all its neighbors?

Activity 3: Complete the adjacency list representation
of the example graph.
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%‘\acg,.'vxg, “,\E v\aﬁbm& Qﬂ—“or\j Jesr | Does this look like any other data structure you have seen so far?




Representing a

class graph{

private:

vector<Nodelnfo*> nodes;

Choose the ADT to represent adijlist

AY vector<int>

L

graph using an adjacency list

adjlist;

. vector<unordered_set<int>>

. list<vector<int>> (gano¥ \©
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vector<list<int>>

set<list<int>>




class graph{

private:
vector<Nodelnfo*> nodes;

adjlist;

How would you represent adjlist for a

weighted graph? <a
X

\Je koY £ unosdefed Nap /

/I Use when edges have no weights
vector<unordered_set<int>> adjlist;




Neural Network structure for upcoming assignment

typedef std::vector<std::unordered_map<int, Connection> > AdijlList;

Input Layer Hidden Layer Output Layer

class Graph {
std::vector<Nodelnfo*> nodes;
AdjList adjacencylList;
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Understanding the Graph and NeuralNetwork classes _ o
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typedef std::vector<std::unordered map<int, Connection> > AdjList; e

class Graph { class NeuralNetwork : public Grph {
Besd on  Neusol Nefuov
public: public:
Graph();
Graph(int size); // Constructors and public functions
// Constructors and destructor
private:
// TODO: graph methods
void updateNode(int id, Nodelnfo n); // each index of layers holds a vector which
Nodelnfo* getNode(int id) const; contains the id's of every node in that layer.
void updateConnection(int v, int u, double w); std::vector<std::vector<int> > layers; M'\[ SW‘(&‘;C

¢ mew \eeywonl |
protecteg: (an // contains ids of input nodes \"\@
to give NeuralNetwork access std::vector<int> inputNodelds;

// adjacency list containing weights for edges. // contains ids of output nodes
AdjlList adjacencylist; std::vector<int> outputNodelds;

// vector storing node info

std::vector<Nodelnfo*> nodes; // since NeuralNetwork inherits from Graph, you can imagine all of the
graph members here as well...

//Other functions
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void test_algorithm() { ™o . . :
s << ondl = Activity 5: Draw the final neural net and its
NeuralNetwork nn(6); g‘ CO\“S . .
—— | representation in memory
Nodelnfo nO("ReLU", 0, -0.2); A
Nodelnfo n1("RelLU", 0, 0.2);
Nodelnfo n2("identity", O, 0);
Nodelnfo n3("sigmoid", 0, 0.98);
Nodelnfo n4("ReLU", 0, 0.11);
Nodelnfo n5("identity", O, 0);

nn.updateNode(0, n0);
nn.updateNode(1, nl);
nn.updateNode(2, n2);
nn.updateNode(3, n3);
nn.updateNode(4, n4);
nn.updateNode(5, n5);
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nn.updateConnection(2, 1, 0.1); C\ - % ')'I /

nn.updateConnection(2, 4,0.2); Cq 2 S W', © 2 . L
nn.updateConnection(2, 0, 0.3); * z o l‘l" me\N\Of"' D\oam WA ad)__.a % 3 -_c_,_\'l;
nn.updateConnection(5, 1, 0.4); C,, = 3¢/H 0" OL ] i
nn.updateConnection(5, 4, 0.5); c:-' f\oédrna ml v Nn% nk 1"15 ‘ Il BN %3 . C‘-}z 0:¢ 3
nn.updateConnection(5, 0, 0.6); Ceo A 4\ 1 1T 4 IS %ﬂ. ° C| L", (L/ (3
nn.updateConnection(1, 3, 0.7); ¢4 .L \ N I J \ l\\ IR \ u 2 _:—) . J
nn.updateConnection(4, 3, 0.8); g ] } < B 1> 1’(
nn.updateConnection(0, 3, 0.9);0‘ o L 2 3 “ y ) g Y 05 N (91( »%

' —0)" < . - - Ce
nn.setinputNodelds({2, 5}); NO = ? N QE,LU ./ O/ O Z% { ‘1—') % 1.y L:Cs 0

nn.setOutputNodelds({3});



Next lecture preclass activities

- Review pa03 tutorial: https://ucsb-cs24.qgithub.io/s25/pa/pa03-tutorial/

- Finish watching the neural net intro video:
https://youtu.be/aircAruvnKk?feature=shared

- Do the assigned reading: Breadth First Search and Depth First Search on
graphs.
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