Handout: https://bit.ly/NeuralNets-GraphRepresentation

Book your mock interview today!

GRAPH REPRESENTATION

THE ARPA NETWORK

DEC (969

Y Nodes

https://bit.ly/NeuralNets-GraphRepresentation
https://bit.ly/NeuralNets-GraphRepresentation
https://bit.ly/NeuralNets-GraphRepresentation

Neural Networks: Biologically inspired structure

N \/A\\\
S e N
087N Y NI 7

. AL s.‘
SN 4

IR S8 27
i X %f‘:&\'/ﬂ"?“‘{\\'//i"’{\

VALZNAN

17X \g?,.-’,;" Q=

Neural Network: Collection of connected Human brain has billions of neurons
neurons modeled after the brain Each neuron is connected to thousands of other neurons

Video intro to neural networks: https://youtu.be/aircAruvnKk?feature=shared

https://youtu.be/aircAruvnKk?feature=shared

What is an artificial neuron?

Neuron — Thing that holds a number

If a neuron just holds a number...where does that number come from?

Terminology: the number stored in the neuron is also called its
activation value or value for short

What decides a neuron’s value?

A neuron’s activation is computed based on the activations of neurons connected to it.
Think of connections as pathways of information flow!

Which neurons will determine the
activation value of neuron 3?

Mneufons 0/ \

An example NN with 6 neurons and 9 connections
_—

What decides a neuron’s value?

The activation for a neuron is computed as the weighted sum of its input
neurons (with some adjustments).

Compute the activation of neuron 3 .)
x, +
(Ka = A(wl Al wS | £

- RelU
d-.va&rcv\ funchion L Sisoid

1.0 — Sigmoid Function

S‘ 5%0‘\6 Sigmoid Activation Function

An example NN with 6 neurons and 9 connections 0.0

100 75

How does a feed-forward neural network compute?

Input Layer Hidden Layer Output Layer

A feedforward neural network (FNN) is
the simplest type of neural network where
data flows in one direction — from input to
output — without looping back.

NN Terminology

 Neurons

« Connections

* Input Layer

« Hidden Layer(s)

« Output Layer

* Neuron Info: activation value, bias,
activation function

How would you represent the neural net using the data structures learned so far?

Neural Networks as Graphs

(PAO3) Model a neural network as a &Imk@z\ N@izj\!\{fb graph.

NN is a set of neurons and connections Graph is a set of nodes (vertices) and edges
- Connections are directed (one-way) » Directed graph: Edges go one way
« Connections have weights « Undirected graph: Edges go both ways

(strength of connection) * Weighted graph: Edges have weights

Graph G = {V,E} G[= % VlE? Q

+ Vertices V = {0, 1, 2, 3,...,n— 1};|V| =
« Edges E={(u,v)|[ueV,veVy}; |E| =
EO‘Q(L\'S;%M lecm)

Activity 1: Write the vertices and edges for the example graph

V=§ 9’ \, ,2')3) \4,5‘% C(W LQ,S-)/("S)%
=5 (0,2, (a3, (a0, (a0, (3,0 L2700 T~

m="%

. . (Jolw, bias
Representing vertices Nade Srfo

Graph G = {V,E}
v={0123,..,n—1}

Activity 2: Your graph has vertices labeled 0 through n - 1.
What's the best way to store the set of vertices?
Vector, why?
B. Hashtable, why?
C. BST, why?

Consider:

1. What do you need to do with the vertices?

(Look them up? Loop through them?)
D. Something else?

2. Does it help that the vertex labels are just %1, 2,..,n-1?
NO au oy M5 Y A
4 42 4 1T F F+—
Convince your neighbor why your pick is the best. I [/ _J

|
O | 2 2 U s

I
Representing vertices with associated info

struct Nodelnfo {
P —]

// The value of this Node before activation.

double preActivationValue;

// The value of this Node after activation.
double postActivationValue;
double bias; //bias

EEEE—

// other fields associated with a neuron

7

std::vector<Nodelnfo> nodes(n); // where n is known ahead of time
— e

OR

std::vector<Nodelnfo*> nodes(n);

Representing the graph using an adjacency list

An adjacency list is a way to represent a graph
where each vertex stores a list of its neighbors (the
ones its connected to by an edge).

G=(V E)
={o, 1,2,3,4,5}

={002),(23,21,24,31D.1,49,1,5), 4 5)4_) (VUL R O
0
|

Guiding question: Given a vertex (v), how efficiently
can we find all its neighbors?

Activity 3: Complete the adjacency list representation
of the example graph.

came (fo ol ffe G&’]Q,
A jovencyy st éﬂﬂﬁ ’(“L :*Z up

%‘\acg,.'vxg, “,\E v\aﬁbm& Qﬂ—“or\j Jesr | Does this look like any other data structure you have seen so far?

Representing a

class graph{

private:

vector<Nodelnfo*> nodes;

Choose the ADT to represent adijlist

AY vector<int>

L

graph using an adjacency list

adjlist;

. vector<unordered_set<int>>

. list<vector<int>> (gano¥ \©
qutc

vector<list<int>>

set<list<int>>

class graph{

private:
vector<Nodelnfo*> nodes;

adjlist;

How would you represent adjlist for a

weighted graph? <a
X

\Je koY £ unosdefed Nap /

/I Use when edges have no weights
vector<unordered_set<int>> adjlist;

Neural Network structure for upcoming assignment

typedef std::vector<std::unordered_map<int, Connection> > AdijlList;

Input Layer Hidden Layer Output Layer

class Graph {
std::vector<Nodelnfo*> nodes;
AdjList adjacencylList;

ly

Understanding the Graph and NeuralNetwork classes _ o

GLOSS yge LSS S 0\‘9‘;« Ao

typedef std::vector<std::unordered map<int, Connection> > AdjList; e

class Graph { class NeuralNetwork : public Grph {
Besd on Neusol Nefuov
public: public:
Graph();
Graph(int size); // Constructors and public functions
// Constructors and destructor
private:
// TODO: graph methods
void updateNode(int id, Nodelnfo n); // each index of layers holds a vector which
Nodelnfo* getNode(int id) const; contains the id's of every node in that layer.
void updateConnection(int v, int u, double w); std::vector<std::vector<int> > layers; M'\[SW‘(&‘;C

¢ mew \eeywonl |
protecteg: (an // contains ids of input nodes \"\@
to give NeuralNetwork access std::vector<int> inputNodelds;

// adjacency list containing weights for edges. // contains ids of output nodes
AdjlList adjacencylist; std::vector<int> outputNodelds;

// vector storing node info

std::vector<Nodelnfo*> nodes; // since NeuralNetwork inherits from Graph, you can imagine all of the
graph members here as well...

//Other functions

|5

void test_algorithm() { ™o . . :
s << ondl = Activity 5: Draw the final neural net and its
NeuralNetwork nn(6); g‘ CO\“S . .
—— | representation in memory
Nodelnfo nO("ReLU", 0, -0.2); A
Nodelnfo n1("RelLU", 0, 0.2);
Nodelnfo n2("identity", O, 0);
Nodelnfo n3("sigmoid", 0, 0.98);
Nodelnfo n4("ReLU", 0, 0.11);
Nodelnfo n5("identity", O, 0);

nn.updateNode(0, n0);
nn.updateNode(1, nl);
nn.updateNode(2, n2);
nn.updateNode(3, n3);
nn.updateNode(4, n4);
nn.updateNode(5, n5);

- \, 0
nn.updateConnection(2, 1, 0.1); C\ - % ')'I /

nn.updateConnection(2, 4,0.2); Cq 2 S W', © 2 . L
nn.updateConnection(2, 0, 0.3); * z o l‘l" me\N\Of"' D\oam WA ad)__.a % 3 -_c_,_\'l;
nn.updateConnection(5, 1, 0.4); C,, = 3¢/H 0" OL] i
nn.updateConnection(5, 4, 0.5); c:-' f\oédrna ml v Nn% nk 1"15 ‘ Il BN %3 . C‘-}z 0:¢ 3
nn.updateConnection(5, 0, 0.6); Ceo A 4\ 1 1T 4 IS %ﬂ. ° C| L", (L/ (3
nn.updateConnection(1, 3, 0.7); ¢4 .L \ N I J \ l\\ IR \ u 2 _:—) . J
nn.updateConnection(4, 3, 0.8); g] } < B 1> 1’(
nn.updateConnection(0, 3, 0.9);0‘ o L 2 3 “ y) g Y 05 N (91(»%

' —0)" < . - - Ce
nn.setinputNodelds({2, 5}); NO = ? N QE,LU ./ O/ O Z% { ‘1—') % 1.y L:Cs 0

nn.setOutputNodelds({3});

Next lecture preclass activities

- Review pa03 tutorial: https://ucsb-cs24.qgithub.io/s25/pa/pa03-tutorial/

- Finish watching the neural net intro video:
https://youtu.be/aircAruvnKk?feature=shared

- Do the assigned reading: Breadth First Search and Depth First Search on
graphs.

https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://youtu.be/aircAruvnKk?feature=shared

