Handout: https://bit.ly/GraphSearch-BFS-DFS

GRAPH SEARCH - BFS & DFS

THE ARPA NETWORK

DEC (969

Y Nodes

https://bit.ly/GraphSearch-BFS-DFS
https://bit.ly/GraphSearch-BFS-DFS
https://bit.ly/GraphSearch-BFS-DFS
https://bit.ly/GraphSearch-BFS-DFS
https://bit.ly/GraphSearch-BFS-DFS

How does information flow in a Neural Network ?

“Hidden layers”

Training in

progress. . . @
TN
9 O\
:\ o
AW f 5
DN R Q O
o/ N 3 o
8,,/:'/ Cg § 1
How does this network Iearnﬁt%e appro(;a;’i[zt?e weights and biases just by looking at layer determine the activations of the next layer.
Training Evaluation/Prediction
Learn network parameters Activations in one layer determine
(all the weights and biases) activations in the next layer

Credits: 3Blue1Brown

https://www.youtube.com/@3blue1brown

Breadth First Traversal: Sketch of Algorithm

source

Layer O

Explore the graph in a wave (layered) pattern:
explore all the vertices reachable from a given
vertex before exploring their neighbors.

Breadth First Traversal: Sketch of Algorithm

source

Layer O

Explore the graph in a wave (layered) pattern:
explore all the vertices reachable from a given
vertex before exploring their neighbors.

- In general, a search algorithm would explore (or “visit”) from a source vertex
- all the vertices reachable
- never exploring out from the same vertex twice

- How does the Breadth First Search/Traversal algorithm ensure this?

Breadth First Algorithm

Algo exploreBFS (Graph G, vertex §)C:)
Lse Mark all the vertices as “not visited”
* Mark s as visited /—
push s into a queue
 while the queue is not empty:
/’ » pop the vertex u from the front of the
zqueue
2- for each of u’s neighbor (v)
* If v has not yet been visited:
« Mark v as visited -
* Push vin the queue

OL33145

Trace BFS for the example graph

)

Assume BFS chooses the lower number vertex
to explore first, in what order does BFS visit the
nodes in this graph starting at source vertex 3.

Trace BFS (different source vertex)

What if edges were directed as shown?
Assume BFS chooses the lower number vertex t¢
explore first, in what order does BFS visit the vertices
in this graph starting at source vertex 3.

Graph search: general approach

-

Keep track of all areas discovered

While there 1s an unexplored path,

_

~N

follow path
J

Systematize the Search with DFS

Depth-First Search explores a graph by following one branch as far
as it can go before backtracking. It uses a stack (explicit or via

recursion) to remember where to return.

© (2)

Need to keep track of: @ @
— Which vertices discovered
— Which edges have yet to be explored @ @

Explore — Depth First

/;;ploreDFS(v)

v.visited < true
For each edge (v,w)
If not w.visited

exploreDFS (w)

L

N

J

https://visualgo.net/en/dfsbfs

https://visualgo.net/en/dfsbfs

Explore (Depth First): Example

explore (A)

exploreDFS (v)
v.visited « true
For each edge (v, w)

If not w.visited

exploreDFS (w)

& v

Explore (Depth First): Example

explore (A)
explore (B)

exploreDFS (v) explore (C)

o explore (D)
v.visited « true

For each edge (v, w
If not w.visited

exploreDFS (w)

J

explore (E)

Explore (Depth First): Example

explore (A)
explore (B)

exploreDFS (v) explore (C)

o explore (D)
v.visited « true

For each edge (v, w
If not w.visited

exploreDFS (w)

v

explore (E)

Explore (Depth First): Example

explore (A)
explore (B)
explore (A)
explore (C)

exploreDFS (v) explore (C)

o explore (D)
v.visited « true

For each edge (v, w)
If not w.visited

exploreDFS (w)

& J

Based on slides by Professor Daniel Kane, UCSD

explore (E)

Explore (Depth First): Example

explore (A)
explore (B)
explore (A)
explore (C)

exploreDFS (v) explore (C)

o explore (D)
v.visited « true

For each edge (v, w)
If not w.visited

exploreDFS (w)

& v

explore (E)

Explore (Depth First): Example

explore (A)
explore (B)
explore (A)
explore (C)
explore (A)
explore (B)
explore (C)
explore (D)

exploreDFS (v)

v.visited < true

For each edge (v, w)
If not w.visited

exploreDFS (w)

& J

Based on slides by Professor Daniel Kane, UCSD

explore (E)

Explore (Depth First): Example

explore (A)
explore (B)
explore (A)
explore (C)
explore (A)
explore (B)
explore (C)
explore (D)

exploreDFS (v)

v.visited « true

For each edge (v, w)
If not w.visited

exploreDFS (w)

. /

explore (E)

Explore (Depth First): Example

explore (A)
explore (B)
explore (A)
explore (C)
explore (A)
explore (B)
explore (C)
explore (D)

Dead end!
What should happen next?

exploreDFS (v)
v.visited « true
For each edge (v, w)

If not w.visited

exploreDFS (w)

o J

explore (E)

Explore (Depth First): Example

explore (A)
explore (B)

explore (C)
exploreDFS (v) explore (C)
- explore (D)
v.visited <« true
Dead end!

For each edge (v, w)

What should happen next?

If not w.visited

exploreDFS (w)

& J

Go back to vertex B
Explore any unexplored
neighbors of B

Explore (Depth First): Example

explore (A)
explore (B)
explore (A)
explore (C)
explore (A)

explore (B)
exploreDFS (v) explore (C)
v.visited <« true explore (D)
For each edge (v,w) Backtracking!
If not w.visited
Go back to A
exploreDFS (w)

Explore unexplored

_ J neighbors of A

explore (E)

Explore (Depth First): Example

explore (A)
explore (B)
explore (A)
explore (C)
explore (A)
explore (B)
explore (C)
explore (D)

exploreDFS (v)

v.visited < true
For each edge (v, w)l
If not w.visited

exploreDFS (w)

. J

explore (E)

Explore (Depth First): Example

explore (A)
explore (B)
explore (A)
explore (C)
explore (A)
explore (B)
explore (C)
explore (D)
explore (A)
explore (H)

exploreDFS (v)

v.visited < true
For each edge (v, w)
If not w.visited

exploreDFS (w)

_ v

explore (E)

Explore (Depth First): Example

explore (A)
explore (B)
explore (A)
explore (C)
explore (A)
explore (B)
explore (C)
explore (D)
explore (A)
explore (H)

exploreDFS (v)

v.visited <« true
For each edge (v, w)
If not w.visited

exploreDFS (w) f

_ J

explore (E)

Explore (Depth First): Example

explore (A)
explore (B)
explore (A)
explore (C)
explore (A)
explore (B)
explore (C)
explore (D)
explore (A)
explore (H)
explore (D)
explore (F)

exploreDFS (v)

v.visited <« true
For each edge (v, w)
If not w.visited

exploreDFS (w)

. J

explore (E)

exploreDFS (v)

o

v.visited « true

For each edge

(v, w)

If not w.visited

exploreDFS (w)

_

v

Explore (Depth First): Example

explore (A)

explore (B)
explore (A)
explore (C)

explore (A)
explore (B)

explore (C)

explore (D)
explore (A)
explore (H)

explore (D)
explore (F)

explore (E)

exploreDFS (v)

v.visited « true

For each edge (v, w)

If not w.visited

exploreDFS (w)

_

v

Explore (Depth First): Example

explore (A)

explore (B)
explore (A)
explore (C)

explore (A)
explore (B)

explore (C)

explore (D)
explore (A)
explore (H)

explore (D)
explore (F)
explore (E)

explore (G)

explore (H)
explore (E)

exploreDFS (v)

o

v.visited « true

For each edge

(v, w)

If not w.visited

exploreDFS (w)

_

v

Explore (Depth First): Example

explore (A)

explore (B)
explore (A)
explore (C)

explore (A)
explore (B)

explore (C)

explore (D)
explore (A)
explore (H)

explore (D)
explore (F)
explore (E)

explore (G)

explore (H)
explore (E)

/

exploreDFS (v)

v.visited « true

For each edge (v, w

If not w.visited

exploreDFS (w)

" J

Explore (Depth First): Example

explore (A)

explore (B)
explore (A)
explore (C)

explore (A)
explore (B)

explore (C)

explore (D)
explore (A)
explore (H)

explore (D)
explore (F)
explore (E)
explore (A)
explore (F)
explore (G)

explore (H)
explore (E)

/

exploreDFS (v)

v.visited < true

For each edge (v, w
If not w.visited

exploreDFS (w)

— Y

)

Explore (Depth First): Example

explore (A)
explore (B)
explore (A)
explore (C)
explore (A)
explore (B)
explore (C)
explore (D)

Dead end! explore ()
explore (H)
| What should happen next? cipiore)
(5 explore (F)

explore (E)
explore (A)
explore (F)

explore (G)

explore (H)
explore (E)

/

exploreDFS (v)

v.visited « true

For each edge (v, w)

If not w.visited

exploreDFS (w)

" J

O
N

Explore (Depth First): Example

A

Backtracking!
| Go backto F

explore (A)

explore (B)
explore (A)
explore (C)

explore (A)
explore (B)

explore (C)

explore (D)
explore (A)
explore (H)

explore (D)
explore (F)
explore (E)
explore (A)
explore (F)
explore (G)

explore (H)
explore (E)

/

exploreDFS (v)

v.visited « true

For each edge (v, w)

If not w.visited

exploreDFS (w)

g J

Explore (Depth First): Example

explore (A)

explore (B)
explore (A)
explore (C)

explore (A)
explore (B)

explore (C)

explore (D)
explore (A)
explore (H)

explore (D)
explore (F)
explore (E)
explore (A)
explore (F)
explore (G)

explore (H)
explore (E)

/

exploreDFS (v)

v.visited « true

For each edge (v, w)

If not w.visited

exploreDFS (w)

g J

Explore (Depth First): Example

explore (A)

explore (B)
explore (A)
explore (C)

explore (A)
explore (B)

explore (C)

explore (D)
explore (A)
explore (H)

explore (D)
explore (F)
explore (E)
explore (A)
explore (F)
explore (G)
explore (F)
explore (H)
explore (E)

/

exploreDFS (v)

v.visited « true

For each edge (v, w)

If not w.visited

exploreDFS (w)

— J

Explore (Depth First): Example

explore (A)

explore (B)
explore (A)
explore (C)

explore (A)
explore (B)

explore (C)

explore (D)
explore (A)
explore (H)

explore (D)
explore (F)
explore (E)
explore (A)
explore (F)
explore (G)
explore (F)
explore (H)
explore (E)

/

exploreDFS (v)

v.visited « true

For each edge (v, w)

If not w.visited

exploreDFS (w)

" J

Explore (Depth First): Example

explore (A)

explore (B)
explore (A)
explore (C)

explore (A)
explore (B)

explore (C)

explore (D)
explore (A)
explore (H)

explore (D)
explore (F)
explore (E)
explore (A)
explore (F)
explore (G)
explore (F)
explore (H)
explore (E)

—
exploreDFS (v)

v.visited < true
For each edge (v, w
If not w.visited

exploreDFS (w)

" v

Explore (Depth First): Example

| Backtracking!

explore (A)

explore (B)
explore (A)
explore (C)

explore (A)
explore (B)

explore (C)

explore (D)
explore (A)
explore (H)

explore (D)
explore (F)
explore (E)
explore (A)
explore (F)
explore (G)
explore (F)
explore (H)
explore (E)

—
exploreDFS (v)

v.visited « true

For each edge (v, w)

If not w.visited

exploreDFS (w)

" v

Explore (Depth First): Example

Backtracking!

explore (A)

explore (B)
explore (A)
explore (C)

explore (A)
explore (B)

explore (C)

explore (D)
explore (A)
explore (H)

explore (D)
explore (F)
explore (E)
explore (A)
explore (F)
explore (G)
explore (F)
explore (H)
explore (E)

Explore (Depth First): Example

explore (A)
explore (B)
explore (A)
explore (C)
explore (A)
explore (B)
explore (C)
explore (D)
explore (A)
explore (H)
explore (D)
explore (F)
explore (E)
explore (A)
explore (F)
explore (G)
explore (F)
explore (H)
explore (E)

/

exploreDFS (v)

v.visited < true
For each edge (v, w)
If not w.visited

exploreDFS (w)

o J

exploreDFS (v)

v.visited « true

For each edge (v, w)

If not w.visited

exploreDFS (w)

_ J

Explore (Depth First): Example

explore (A)

explore (B)
explore (A)
explore (C)

explore (A)
explore (B)

explore (C)

explore (D)
explore (A)
explore (H)

explore (D)
explore (F)
explore (E)
explore (A)
explore (F)
explore (G)
explore (F)
explore (H)
explore (E)

Explore (Depth First)

Search as far down a single path as
possible, backtrack as needed

Assuming exploreDFS chooses the lower number node to explore fir&,/
in what order does exploreDFS visit the nodes in this graph starting at source 07?
A.0, 2,0,1,3,4,5
0,2,3,4,1,5

,2,1,3, 4,5

B.
C.0
D. Something else

Question: exploreDFS

Which vertices does exploreDFS(s) mark as visited?
A. All the vertices
B. All vertices except C & E

C. None of the above

Question: exploreDFS

Which vertices does exploreDFS(s) mark as visited?
A. All the vertices
B. All vertices except C & E

C. None of the above

Use exploreDFS to write another algo that will
visit all the vertices in this graph

Depth First Search

exploreDFS only finds the part of the graph reachable from a
single vertex. If you want to discover the entire graph, you may need
to run it multiple times.

/BepthFirstSearch(G) \\
Mark all v € G as unvisited

For v € G

\\ If not v.visited, exploreDFS(vL/

There are n rooms labeled from 0 to n - 1 and all the rooms are locked except for

room 0. Your goal is to visit all the rooms. However, you cannot enter a locked room
without having its key.

When you visit a room, you may find a set of distinct keys in it. Each key has a
number on it, denoting which room it unlocks, and you can take all of them with you
to unlock the other rooms.

Given an array rooms where roomsJi] is the set of keys that you can obtain if you
visited room i, return true if you can visit all the rooms, or false otherwise.

S S VS
Input: rooms = [[1].[2, 3].[1].[]]

Output:? T4ve O 312 2 3

put 2 Tt A 1

S
L), [v3,3), (033
o

https://leetcode.com/problems/keys-and-rooms/description/

https://leetcode.com/problems/keys-and-rooms/description/
https://leetcode.com/problems/keys-and-rooms/description/
https://leetcode.com/problems/keys-and-rooms/description/
https://leetcode.com/problems/keys-and-rooms/description/
https://leetcode.com/problems/keys-and-rooms/description/

> (1D

Input: rooms =[[1],[2, 3],[1],[]] @)
Output:true © 2 22 1 L’?i/'%j
Explanation: 2

3 Ld

We visit room 0 and pick up key 1. . r
We then visit room 1 and pick up keys 2 and 3. M)MO"L'I"‘
We then visit room 2 and pick up key 1.

We then visit room 3.

Since we were able to visit every room, we return true.

Cast as a graph exploration problem

https://leetcode.com/problems/keys-and-rooms/description/

https://leetcode.com/problems/keys-and-rooms/description/
https://leetcode.com/problems/keys-and-rooms/description/
https://leetcode.com/problems/keys-and-rooms/description/
https://leetcode.com/problems/keys-and-rooms/description/
https://leetcode.com/problems/keys-and-rooms/description/

Before next lecture...

Complete the preclass activities from last lecture if you haven’t done so already.

* Review pa03 tutorial: https://ucsb-cs24.qgithub.io/s25/pa/pa03-tutorial/

« Watch intro video on NN (3Blue1Brown) : https://youtu.be/aircAruvnKk?feature=share

Next lecture preclass activities:
« Watch videos from statQuest:

— Neural Network Basics (great for understanding the prediction algorithm):
https://youtu.be/CqOfi41LfDw?si=8waS2U01uMWcpH2i

— Back Propagation (great for understanding the contribute algorithm):
https://youtu.be/IN2XmBhILt4?7si=bnDft-3T4DQ2i09X

* Finish the PAO3 “check your understanding assignment” on Gradscope.

https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://ucsb-cs24.github.io/s25/pa/pa03-tutorial/
https://youtu.be/aircAruvnKk?feature=shared
https://youtu.be/CqOfi41LfDw?si=8waS2U01uMWcpH2i
https://youtu.be/IN2XmBhILt4?si=bnDft-3T4DQ2iO9X
https://youtu.be/IN2XmBhILt4?si=bnDft-3T4DQ2iO9X
https://youtu.be/IN2XmBhILt4?si=bnDft-3T4DQ2iO9X

Acknowledgements

Slides on Depth First Search and animation from Prof. Daniel Kane at UC San Diego

