
FAST LOOKUP WITH HASHTABLES
Problem Solving with Computers-II

2

Hastable — Dictionary like data structure

std::unordered_set<T> — stores unique keys, no duplicates

std::unordered_set<string> countries = {"USA", "France", "India"};
s.insert("Germany");
s.erase("France");
auto found = find("USA");

std::unordered_map<Key, Value> — stores key-value pairs (like a dictionary)

unordered_map<string, string> capitals= {{"USA", "Washington"}, {"France", “Paris"}};

capitals["Germany"] = "Berlin"; // insert
capitals.erase("France"); // delete
auto found = find("USA"); // find

3

Hashtable for fast lookup

Source: https://medium.com/@saurabh.bhoy910/stl-unordered-
map-hashtable-c7054b28d07f

Blockchain | Likes | Caching | PasswordsDictionary-like data structure
Japan : Tokyo
USA : Washington
India : New Delhi

All operations O(1) on average*:
• find
• insert
• erase

*no worst case guarantees but fast in practice!

https://medium.com/@saurabh.bhoy910/stl-unordered-map-hashtable-c7054b28d07f
https://medium.com/@saurabh.bhoy910/stl-unordered-map-hashtable-c7054b28d07f
https://medium.com/@saurabh.bhoy910/stl-unordered-map-hashtable-c7054b28d07f

4

Amazon User Tracking Scenario

Amazon engineers track ~200M unique users by IP addresses during peak
shopping season. Each website access requires checking if the IP is in the list; if
not, it’s added. This helps analyze user interest and personalize recommendations.

Which data structure should Amazon engineers use to track ~200M unique users
by IP addresses?

5

Goal - Fast search (lookup) and insert

• Keys: IP addresses (32 bits)
• example : 192.168.1.6

• 2^32 ~ 4.3B possible IPs
• 200M (4.7%) unique users

192
(8 bits)

168
(8 bits)

1
(8 bits)

6
(8 bits)

192.168.1.6 → uint32_t: 3234251782

Which data structure should Amazon engineers use to track ~200M unique users
by IP addresses?

Can we achieve O(1) search?

6

Naïve approach: 2³²-sized vector

If you had to track unique IPs out of 4.3 billion (2^32) possibilities, how much
memory do you think you'd need if you used a direct index approach?

2^10 bytes = 1KB, 2^20 bytes = 1 MB, 2^30 bytes = 1GB

Assuming 1 bit per IP, we need 2^32 bits = 2^ 29 bytes = 512 MB

Assuming 4 bytes per IP = 512 * 32 MB = 16 GB

Setup for hash tables • Keep track of evolving set S whose
size is much less than the universe of
all possible keys

• For example, 200M unique users
 (~ 5% of all possible IPs)

Universe of
possible keys, U
(Very large)

For example:
4.3 billion possible IP
addresses

Insert key 192.168.1.6

Universe of
possible keys, U
(Very large)

For example:
4.3 billion possible IP
addresses

Hash function: h(x)
Table size: m
 Num keys: n

h(x)
192.168.1.6

h(x) = toint(x) mod m

= toint(192.168.1.6) mod 10

= 3234251782 mod 10

= 2

192.168.1.6

• Keep track of evolving set S whose
size is much less than the universe of
all possible keys

• For example, 200M unique users
 (~ 5% of all possible IPs)

Insert key 0.0.0.11

Universe of
possible keys, U
(Very large)

For example:
4.3 billion possible IP
addresses

h(x)
0.0.0.11

h(x) = toint(x) mod m

 =

192.168.1.6

?

Hash function: h(x)
Table size: m
 Num keys: n

Insert key 0.0.0.11

Universe of
possible keys, U
(Very large)

For example:
4.3 billion possible IP
addresses

h(x)

h(x) = toint(x) mod m

 = 11 mod 10

 = 1

1
2 192.168.1.6

0.0.0.11

0.0.0.11

Hash function: h(x)
Table size: m
 Num keys: n

Insert 0.0.1.5

Universe of
possible keys, U
(Very large)

For example:
4.3 billion possible IP
addresses

h(x)

2 192.168.1.6

0.0.0.11

0.0.1.5

?
h(x) = toint(x) mod m

 =

Hash function: h(x)
Table size: m
 Num keys: n

Insert key 0.0.1.5 results in a collision!

Universe of
possible keys, U
(Very large)

For example:
4.3 billion possible IP
addresses

h(x)

2 192.168.1.6

0.0.0.11

0.0.1.5

h(x) = toint(x) mod m

 = (256 + 5) mod 10

 = 261 mod 10

 = 1

Hash function: h(x)
Table size: m
 Num keys: n 0.0.1.5

Collision: Two
keys map to the
same spot!

What should happen when two IPs hash to the same index?
 A B C D
 Crash Overwrite Chain Reject

Resolving collisions: separate chaining

Universe of
possible keys, U
(Very large)

For example:
4.3 billion possible IP
addresses

h(x)

2 192.168.1.6

0.0.0.11

0.0.1.5

Hash function: h(x)
Table size: m
 Num keys: n 0.0.1.5

Collision resolved!
Buckets

5
6

(Refined) Logical model of a hash table

0
1
2

0.0.0.77
8
9

3
4

index =
HC mod m

• Keys stored in buckets (vector)

• Keys used to compute index of
position in vector

• Each bucket can store multiple
keys as a linked list

• Hashtable with separate
chaining: Vector of linked list

Buckets

0.0.0.11 0.0.1.5

192.168.1.6

0.0.1.7

Hashtable visualization https://visualgo.net/en/hashtable

https://visualgo.net/en/hashtable

16

Goal - Fast search (lookup) and insert

192
(8 bits)

168
(8 bits)

1
(8 bits)

6
(8 bits)

192.168.1.6 → uint32_t: 3234251782

Total IPs: 2^32 ≈ 4.3B

Which data structure should Amazon engineers use to track ~200M unique users
by IP addresses?

A) Set (Balanced BST)
B) unordered_set (Hashtable)
C) Priority Queue
D) Queue
E) Vector with 2^32 entries (one for each possible IP address)

Design challenges
Keep track of evolving set S
whose size is much less than the
universe of all possible keys

For example, 200M unique users
 (~ 5% of all possible IPs)

Universe of
possible keys, U
(Very large)

For example:
4.3 billion possible IP
addresses

• Deciding on collision resolution strategy
• Deciding the size of hash table
• Deciding the hash function

Can we guarantee good performance?
We implemented a hashtable with separate chaining.

Table size: m
Number of keys: n
Load factor = n/m
Hash function: h(x) = x mod m

If randomly uniformly selected keys, then “on average” things seem fine.
Expected time to search is O() (in practice, choose = 1)

Can all keys still hash to the same bucket?
(Worst-case scenario, linear search complexity!)

α

α α

What’s the chance of linear search complexity?
What is the probability that all keys hash to the same bucket?
Let’s say we’re inserting n = 1000 keys into an empty table with m = 1000 buckets.

A. 0

B.

C.

D.

E. It depends…

1/1000
1/1000999

1/10001000
• We're using the hash function h(x) = x mod m
• Keys are chosen independently and uniformly at random

• Hash table uses separate chaining

Is there a hash function that avoids linear search complexity?

Is there a hash function that avoids linear search complexity?

Pigeonhole Principle:
If there are m pigeonholes and
m + 1 pigeons, at least one
pigeonhole has more than 1 pigeon

Generalized Pigeonhole Principle:
If there are m pigeonholes and
nm + 1 pigeons, at least one pigeonhole
has more than_________ pigeons.

Universe of
possible keys, U

 h(x)

Generalized Pigeonhole Principle:
If there are m pigeonholes and
nm + 1 pigeons, at least one pigeonhole
has more than n pigeons.

Universe of
possible keys, U

 h(x)

Theorem: Suppose a hash table of size is used to
store a set S of keys drawn from the universe ,
where . Then, no matter which hash function

is chosen, there is a set
 of keys that all map tp the same location.

Proof:
1. Pick any hash function of your choosing.
2. Map all keys of U using h to the table of size m.
3. By the pigeonhole principle, at least one table slot

gets at least n keys because
4. Choose those n keys as input set S
5. Now h will map S to a single location.

What does this mean for real-world applications?

m
n U

|U | > nm
h : U → {0,1,2,…m − 1}
S ⊂ U n

|U | > nm

Is there a hash function that avoids linear search complexity?

Main result so far: No single hash function can avoid worst case linear time
search complexity!

Universal Hash Functions

Example: h(x) = ax + b (mod p) where p is a prime number

Main idea behind universal hash functions: Don’t fix a single hash
function. Choose one randomly from a “good” family of hash functions.

• Imagine an adversary picks two keys, x and y.
• You, the algorithm designer, get to randomly choose a hash function h

from a big family H.
• The hash function is designed so that:

The chance that h(x) = h(y) is at most 1/m.

23

Professor Subhash Suri’s CS 130A handout on hash tables:

https://sites.cs.ucsb.edu/~suri/cs130a/Hashing.pdf

References

https://sites.cs.ucsb.edu/~suri/cs130a/Hashing.pdf

