
FAST LOOKUP WITH HASHTABLES
Problem Solving with Computers-II
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Hastable — Dictionary like data structure

std::unordered_set<T> — stores unique keys, no duplicates 

std::unordered_set<string> countries = {"USA", "France", "India"}; 
s.insert("Germany");                  
s.erase("France"); 
auto found = find("USA"); 

std::unordered_map<Key, Value> — stores key-value pairs (like a dictionary) 

unordered_map<string, string> capitals= {{"USA", "Washington"}, {"France", “Paris"}}; 

capitals["Germany"] = "Berlin"; // insert 
capitals.erase("France");       // delete 
auto found = find("USA");       // find 
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Hashtable for fast lookup

Source: https://medium.com/@saurabh.bhoy910/stl-unordered-
map-hashtable-c7054b28d07f 

Blockchain | Likes | Caching | PasswordsDictionary-like data structure 
Japan     : Tokyo 
USA        : Washington 
India       : New Delhi 

All operations O(1) on average*:  
• find 
• insert 
• erase 

*no worst case guarantees but fast in practice!

https://medium.com/@saurabh.bhoy910/stl-unordered-map-hashtable-c7054b28d07f
https://medium.com/@saurabh.bhoy910/stl-unordered-map-hashtable-c7054b28d07f
https://medium.com/@saurabh.bhoy910/stl-unordered-map-hashtable-c7054b28d07f
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Amazon User Tracking Scenario

Amazon engineers track ~200M unique users by IP addresses during peak 
shopping season.  Each website access requires checking if the IP is in the list; if 
not, it’s added. This helps analyze user interest and personalize recommendations. 

Which data structure should Amazon engineers use to track ~200M unique users 
by IP addresses? 
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Goal - Fast search (lookup) and insert

• Keys: IP addresses (32 bits) 
• example : 192.168.1.6 

• 2^32 ~ 4.3B possible IPs   
• 200M (4.7%) unique users

192 
(8 bits)

168 
(8 bits)

1 
(8 bits)

6 
(8 bits)

192.168.1.6 → uint32_t: 3234251782 

Which data structure should Amazon engineers use to track ~200M unique users 
by IP addresses? 

Can we achieve O(1) search? 
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Naïve approach: 2³²-sized vector

If you had to track unique IPs out of 4.3 billion (2^32) possibilities, how much 
memory do you think you'd need if you used a direct index approach? 

2^10 bytes  = 1KB,  2^20 bytes = 1 MB, 2^30 bytes = 1GB 

Assuming 1 bit per IP, we need 2^32 bits = 2^ 29 bytes = 512 MB                 

Assuming 4 bytes per IP = 512 * 32 MB = 16 GB 



Setup for hash tables • Keep track of evolving set S whose 
size is much less than the universe of 
all possible keys 

• For example, 200M unique users  
   (~ 5% of all possible IPs)

Universe of 
possible keys, U 
(Very large)

For example: 
4.3 billion possible IP 
addresses



Insert key 192.168.1.6

Universe of 
possible keys, U 
(Very large)

For example: 
4.3 billion possible IP 
addresses

Hash function: h(x) 
Table size: m  
 Num keys: n

h(x)
192.168.1.6

h(x) = toint(x) mod m 

= toint(192.168.1.6) mod 10  

= 3234251782 mod 10 

= 2

192.168.1.6

• Keep track of evolving set S whose 
size is much less than the universe of 
all possible keys 

• For example, 200M unique users  
   (~ 5% of all possible IPs)



Insert key 0.0.0.11

Universe of 
possible keys, U 
(Very large)

For example: 
4.3 billion possible IP 
addresses

h(x)
0.0.0.11

h(x) = toint(x) mod m 

     = 

192.168.1.6

?

Hash function: h(x) 
Table size: m  
 Num keys: n



Insert key 0.0.0.11

Universe of 
possible keys, U 
(Very large)

For example: 
4.3 billion possible IP 
addresses

h(x)

h(x) = toint(x) mod m 

     = 11 mod 10 

     = 1

1 
2 192.168.1.6

0.0.0.11

0.0.0.11

Hash function: h(x) 
Table size: m  
 Num keys: n



Insert 0.0.1.5

Universe of 
possible keys, U 
(Very large)

For example: 
4.3 billion possible IP 
addresses

h(x)

2 192.168.1.6

0.0.0.11

0.0.1.5

?
h(x) = toint(x) mod m 

     =

Hash function: h(x) 
Table size: m  
 Num keys: n



Insert key 0.0.1.5 results in a collision!

Universe of 
possible keys, U 
(Very large)

For example: 
4.3 billion possible IP 
addresses

h(x)

2 192.168.1.6

0.0.0.11

0.0.1.5

h(x) = toint(x) mod m 

     = (256 + 5) mod 10 

     = 261 mod 10 

     = 1

Hash function: h(x) 
Table size: m  
 Num keys: n 0.0.1.5

Collision: Two 
keys map to the 
same spot! 

What should happen when two IPs hash to the same index? 
                 A               B            C             D 
            Crash   Overwrite     Chain     Reject



Resolving collisions: separate chaining

Universe of 
possible keys, U 
(Very large)

For example: 
4.3 billion possible IP 
addresses

h(x)

2 192.168.1.6

0.0.0.11

0.0.1.5

Hash function: h(x) 
Table size: m  
 Num keys: n 0.0.1.5

Collision resolved!
Buckets
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(Refined) Logical model of a hash table

0 
1 
2 

0.0.0.77 
8 
9

3 
4 

index =  
HC mod m 

• Keys stored in buckets (vector) 

• Keys used to compute index of 
position  in vector 

• Each bucket can store multiple 
keys as a linked list 

• Hashtable with separate 
chaining: Vector of linked list 

Buckets

0.0.0.11 0.0.1.5

192.168.1.6

0.0.1.7



Hashtable visualization https://visualgo.net/en/hashtable 

https://visualgo.net/en/hashtable
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Goal - Fast search (lookup) and insert

192 
(8 bits)

168 
(8 bits)

1 
(8 bits)

6 
(8 bits)

192.168.1.6 → uint32_t: 3234251782 

Total IPs: 2^32 ≈ 4.3B 

Which data structure should Amazon engineers use to track ~200M unique users 
by IP addresses? 

A) Set  (Balanced BST) 
B) unordered_set (Hashtable) 
C) Priority Queue 
D) Queue 
E) Vector with 2^32 entries (one for each possible IP address) 



Design challenges
Keep track of evolving set S 
whose size is much less than the 
universe of all possible keys

For example, 200M unique users  
   (~ 5% of all possible IPs)

Universe of 
possible keys, U 
(Very large)

For example: 
4.3 billion possible IP 
addresses

• Deciding on collision resolution strategy 
• Deciding the size of hash table 
• Deciding the hash function



Can we guarantee good performance?
We implemented a hashtable with separate chaining. 

Table size: m  
Number of keys: n 
Load factor  = n/m   
Hash function: h(x) = x mod m 

If randomly uniformly selected keys, then “on average” things seem fine. 
Expected time to search is O( )   (in practice, choose  = 1) 

Can all keys still hash to the same bucket?  
(Worst-case scenario, linear search complexity!) 

α

α α



What’s the chance of linear search complexity?
What is the probability that all keys hash to the same bucket?  
Let’s say we’re inserting n = 1000 keys into an empty table with m = 1000 buckets. 

A. 0 

B.  

C.  

D.  

E. It depends… 

1/1000
1/1000999

1/10001000
• We're using the hash function h(x) = x mod m 
• Keys are chosen independently and uniformly at random 

• Hash table uses separate chaining 

Is there a hash function that avoids linear search complexity?



Is there a hash function that avoids linear search complexity?

Pigeonhole Principle: 
If there are m pigeonholes and  
m + 1 pigeons, at least one 
pigeonhole has more than 1 pigeon

Generalized Pigeonhole Principle: 
If there are m pigeonholes and  
nm + 1 pigeons, at least one pigeonhole 
has more than_________ pigeons.

Universe of 
possible keys, U 

  h(x)



Generalized Pigeonhole Principle: 
If there are m pigeonholes and  
nm + 1 pigeons, at least one pigeonhole 
has more than n pigeons.

Universe of 
possible keys, U 

  h(x)

Theorem: Suppose a hash table of size  is used to 
store a set S of  keys drawn from the universe , 
where . Then, no matter which hash function 

is chosen, there is a set 
 of  keys that all map tp the same location. 

Proof: 
1. Pick any hash function of your choosing. 
2. Map all keys of U using h to the table of size m. 
3. By the pigeonhole principle, at least one table slot 

gets at least n keys because  
4. Choose those n keys as input set S 
5. Now h will map S to a single location. 

What does this mean for real-world applications?

m
n U

|U | > nm
h : U → {0,1,2,…m − 1}
S ⊂ U n

|U | > nm

Is there a hash function that avoids linear search complexity?



Main result so far: No single hash function can avoid worst case linear time 
search complexity! 

Universal Hash Functions

Example: h(x) = ax + b (mod p) where p is a prime number

Main idea behind universal hash functions: Don’t fix a single hash 
function. Choose one randomly from a “good” family of hash functions. 

• Imagine an adversary picks two keys, x and y. 
• You, the algorithm designer, get to randomly choose a hash function h 

from a big family H. 
• The hash function is designed so that: 

The chance that h(x) = h(y) is at most 1/m.
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Professor Subhash Suri’s CS 130A handout on hash tables: 

https://sites.cs.ucsb.edu/~suri/cs130a/Hashing.pdf 
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