FAST LOOKUP WITH HASHTABLES

Problem Solving with Computers-l| C l '
aos“eaxd:
© waﬂ‘:}.\“ g B2 =

-2
Hastable — Dictionary like data structure

std::unordered_set<T> — stores unique keys, no duplicates

std::unordered_set<string> countries = {"USA", "France", "India"};
s.insert("Germany");

s.erase("France");

auto found = find("USA");

std: :unordered_map<Key, Value> — stores key-value pairs (like a dictionary)

unordered_map<string, string> capitals= {{"USA", "Washington"}, {"France", “Paris"}};

capitals["Germany"] = "Berlin"; // insert
capitals.erase("France"); // delete
auto found = find("USA"); // find

3
Hashtable for fast lookup

Dictionary-like data structure Blockchain | Likes | Caching | Passwords

Japan : Tokyo . | l !
USA : Washington

India : New Delhi m

All operations O(1) on average*:
e find
e insert AND 9071
e erase .

*no worst case guarantees but fast in practice!

Source: https://medium.com/@saurabh.bhoy910/stl-unordered-
map—-hashtable-c7054b28d07f

https://medium.com/@saurabh.bhoy910/stl-unordered-map-hashtable-c7054b28d07f
https://medium.com/@saurabh.bhoy910/stl-unordered-map-hashtable-c7054b28d07f
https://medium.com/@saurabh.bhoy910/stl-unordered-map-hashtable-c7054b28d07f

Amazon User Tracking Scenario

Amazon engineers track ~200M unique users by IP addresses during peak
shopping season. Each website access requires checking if the IP is in the list; if
not, it's added. This helps analyze user interest and personalize recommendations.

amaZon
~—"

Which data structure should Amazon engineers use to track ~200M unique users
by IP addresses?

-5
Goal - Fast search (lookup) and insert

Which data structure should Amazon engineers use to track ~200M unique users
by IP addresses?

* Keys: IP addresses (32 bits) 192 168 1 6
* example : 192.168.1.6 (8 bits) (8 bits) (8 bits) (8 bits)

e DN ~ I
2132~ 4.38 possible [Ps 192.168.1.6 - uint32_t: 3234251782
« 200M (4.7%) unique users

Can we achieve O(1) search?

Nalve approach: 2°4-sized vector

If you had to track unique IPs out of 4.3 billion (2"32) possibilities, how much
memory do you think you'd need if you used a direct index approach?

2M0 bytes = 1KB, 2720 bytes =1 MB, 2”30 bytes = 1GB
Assuming 1 bit per IP, we need 2”32 bits = 2* 29 bytes = 512 MB

Assuming 4 bytes per IP =512 * 32 MB = 16 GB

Setup for haSh tableS » Keep track of evolving set S whose

size is much less than the universe of
all possible keys

* For example, 200M unique users
(~ 5% of all possible IPs)

Insert key 1 92 1 68 1 6 » Keep track of evolving set S whose

192.168.1.6

size is much less than the universe of
all possible keys

* For example, 200M unique users
(~ 5% of all possible IPs)

Hash function: h(x)
Table size: m
Num keys: n

> h(X) /

h(x) = toint(x) mod m

toint(192.168.1.6) mod 10
3234251782 mod 10
2

L
Insert key 0.0.0.11

Hash function: h(x)
Table size: m
Num keys: n

0.0.0.11

> h(X)

h(x) = toint(x) mod m

=7

Insert key 0.0.0.11

Hash function: h(x)
Table size: m
Num keys: n

0.0.0.11

> h(X)

h(x) = toint(x) mod m
= 11 mod 10
=1

L
Insert 0.0.1.5

Hash function: h(x)
Table size: m

Num keys: n
0.0.1.5

> h(X)
h(x) = toint(x) mod m

7

L
Insert key 0.0.1.5 results in a collision!

What should happen when two IPs hash to the same index?
A B C D
Crash Overwrite Chain Reject

Hash function: h(x)
Table size: m

Num keys: n x 0.0.1.5
Collision: Two
0.0.1.5 keys map to the
> h(x) same spot!
h(x) = toint(x) mod m

(256 + 5) mod 10
= 261 mod 10
=1

L
Resolving collisions: separate chaining

Buckets
Collision resolved!

Hash function: h(x)
Table size: m
Num keys: n

———192.168.1.6

0.0.1.5

> h(X)

(Refined) Logical model of a hash table
Buckets

 Keys stored in buckets (vector)

 Keys used to compute index of
position in vector

« Each bucket can store multiple
keys as a linked list

« Hashtable with separate
chaining: Vector of linked list

Hash
function

index =
HC mod m
»
Hash
Code
(HC)

Hashtable visualization https://visualgo.net/en/hashtable

WISUALG O/ /hashtable LP QP DH SEPARATE CHAINING

N=9,M=7,0=1.3

° g
@ & &

https://visualgo.net/en/hashtable

. R
Goal - Fast search (lookup) and insert

Which data structure should Amazon engineers use to track ~200M unique users
by IP addresses?

A) Set (Balanced BST)

B) unordered_set (Hashtable)

C) Priority Queue

D) Queue

E) Vector with 232 entries (one for each possible IP address)

192 168 1 §)
(8 bits) (8 bits) (8 bits) (8 bits)

192.168.1.6 -» uint32_t: 3234251782
Total IPs: 2732 = 4.3B

Design challenges

Keep track of evolving set S
whose size is much less than the
universe of all possible keys

* Deciding on collision resolution strategy
* Deciding the size of hash table
* Deciding the hash function

Universe of
possible keys, U
(Very large)

For example, 200M unique users
(~ 5% of all possible IPs)

Can we guarantee good performance?

We implemented a hashtable with separate chaining.

Table size: m
Number of keys: n

Load factor @ = n/m
Hash function: h(x) = x mod m

If randomly uniformly selected keys, then “on average” things seem fine.
Expected time to search is O(ar) (in practice, choose a = 1)

Can all keys still hash to the same bucket?
(Worst-case scenario, linear search complexity!)

What's the chance of linear search complexity?

What is the probability that all keys hash to the same bucket?

Let's say we're inserting n = 1000 keys into an empty table with m = 1000 buckets.
A.0

B. 1/1000
C. 1/1000°%

D. 1/10001%%
E. It depends...

» We're using the hash function h(x) = x mod m

« Keys are chosen independently and uniformly at random

» Hash table uses separate chaining

Is there a hash function that avoids linear search complexity?

Is there a hash function that avoids linear search complexity?

NS
, h(x)
é SIS
Pigeonhole Principle: Generalized Pigeonhole Principle:
If there are m pigeonholes and If there are m pigeonholes and
m + 1 pigeons, at least one nm + 1 pigeons, at least one pigeonhole

pigeonhole has more than 1 pigeon has more than pigeons.

Is there a hash function that avoids linear search complexity?

Theorem: Suppose a hash table of size m is used to

store a set S of n keys drawn from the universe U,

where | U| > nm. Then, no matter which hash function

h:U— {0,1,2,...m — 1}is chosen, there is a set Universe of h(x)
S C U of n keys that all map tp the same location. possible keys, U

Key

O N ol AW NP O

Proof:
1. Pick any hash function of your choosing.

2. Map all keys of U using h to the table of size m. Generalized Piaeonhole Princiole:
3. By the pigeonhole principle, at least one table slot 9 pie.

gets at least n keys because |U| > nm If there are m pigeonholes and

4. Choose those n keys as input set S nm + 1 pigeons, at least one pigeonhole
5. Now h will map S to a single location. has more than n pigeons.

What does this mean for real-world applications?

Universal Hash Functions

Main result so far: No single hash function can avoid worst case linear time
search complexity!

Main idea behind universal hash functions: Don't fix a single hash
function. Choose one randomly from a “good” family of hash functions.

 Imagine an adversary picks two keys, x and .

e You, the algorithm designer, get to randomly choose a hash function h
from a big family H.

e The hash function is designed so that:
The chance that h(x) = h(y) is at most 1/m.

Example: h(x) = ax + b (mod p) where p is a prime number

B
References
Professor Subhash Suri’'s CS 130A handout on hash tables:

https.//sites.cs.ucsb.edu/~suri/cs130a/Hashing.pdf

https://sites.cs.ucsb.edu/~suri/cs130a/Hashing.pdf

