

FAST LOOKUP WITH HASHTABLES

Problem Solving with Computers-II

C++

```
#include <iostream>
using namespace std;
int main(){
    cout<<"Hola Facebook\n";
    return 0;
}
```

Hastable — Dictionary like data structure

std::unordered_set<T> – stores unique keys, no duplicates

```
std::unordered_set<string> countries = {"USA", "France", "India"};
s.insert("Germany");
s.erase("France");
auto found = find("USA");
```

std::unordered_map<Key, Value> – stores key-value pairs (like a dictionary)

```
unordered_map<string, string> capitals= {{"USA", "Washington"}, {"France", "Paris"}};

capitals["Germany"] = "Berlin"; // insert
capitals.erase("France"); // delete
auto found = find("USA"); // find
```

Hashtable for fast lookup

Dictionary-like data structure

Japan : Tokyo

USA : Washington

India : New Delhi

All operations $O(1)$ on average*:

- find
- insert
- erase

*no worst case guarantees but fast in practice!

Blockchain | Likes | Caching | Passwords

Source: <https://medium.com/@saurabh.bhoy910/stl-unordered-map-hashtable-c7054b28d07f>

Amazon User Tracking Scenario

Amazon engineers track ~200M unique users by IP addresses during peak shopping season. Each website access requires checking if the IP is in the list; if not, it's added. This helps analyze user interest and personalize recommendations.

Which data structure should Amazon engineers use to track ~200M unique users by IP addresses?

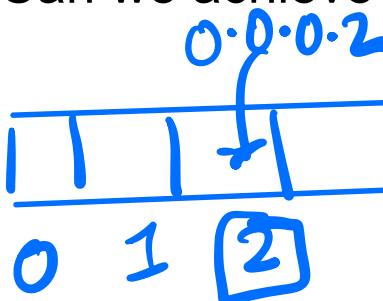
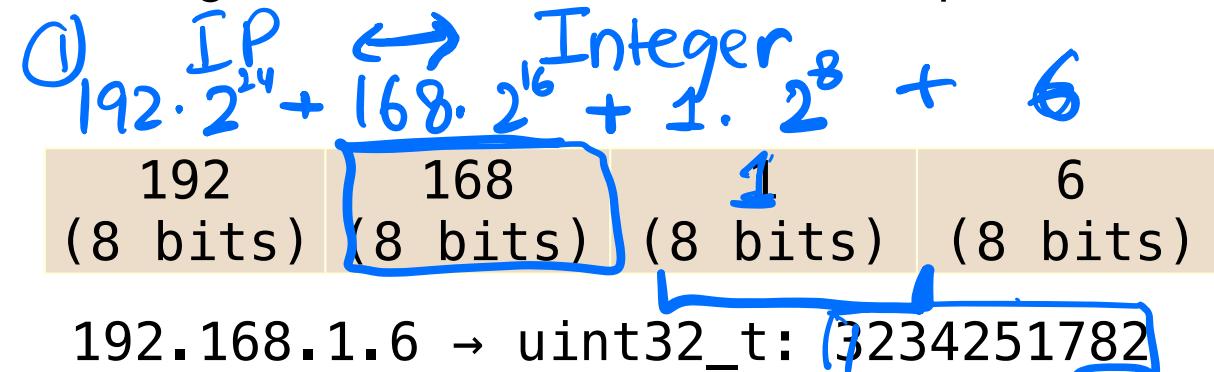
Goal - Fast search (lookup) and insert

$0.0.0.2 \rightarrow 2$

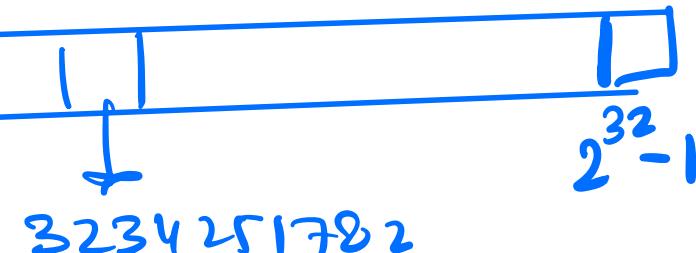
Which data structure should Amazon engineers use to track ~200M unique users by IP addresses?

- Keys: IP addresses (32 bits)
 - example : 192.168.1.6
- $2^{32} \sim 4.3B$ possible IPs
- 200M (4.7%) unique users

Can we achieve $O(1)$ search?



$$(192 \ll 24 + 168 \ll 16 + 1 \ll 8 + 6)$$



Naïve approach: 2^{32} -sized vector

If you had to track unique IPs out of 4.3 billion (2^{32}) possibilities, how much memory do you think you'd need if you used a direct index approach?

2^{10} bytes = 1KB, 2^{20} bytes = 1 MB, 2^{30} bytes = 1GB

Assuming 1 bit per IP, we need 2^{32} bits = 2^{29} bytes = 512 MB

Assuming 4 bytes per IP = $512 * 32$ MB = 16 GB

Setup for hash tables

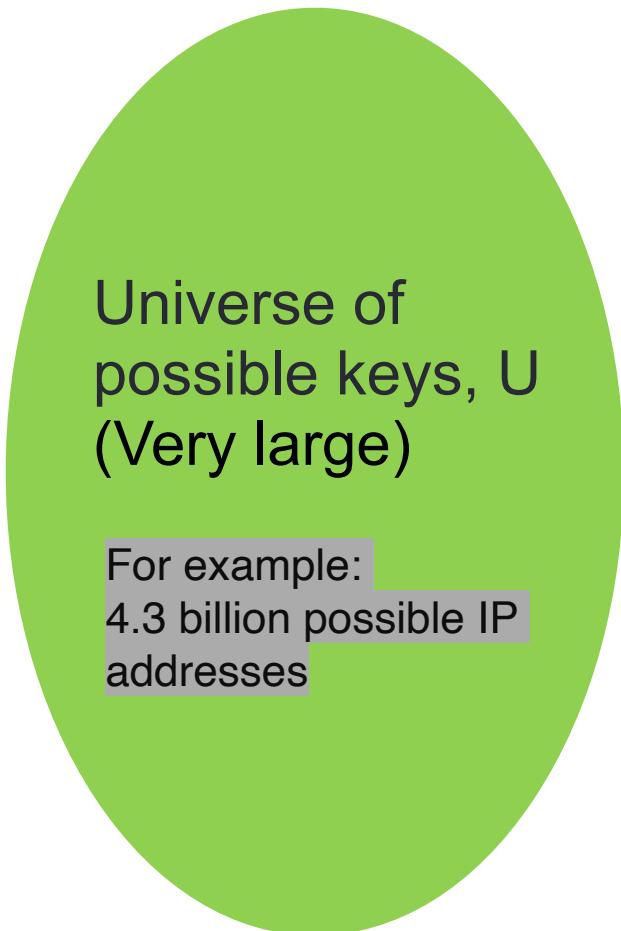
Universe of possible keys, U
(Very large)

For example:
4.3 billion possible IP addresses

- Keep track of evolving set S whose size is much less than the universe of all possible keys
- For example, 200M unique users (~ 5% of all possible IPs)

0	
1	
2	Key
3	
4	
5	
6	
7	
8	
9	

Insert key 192.168.1.6



Hash function: $h(x)$
Table size: m
Num keys: n

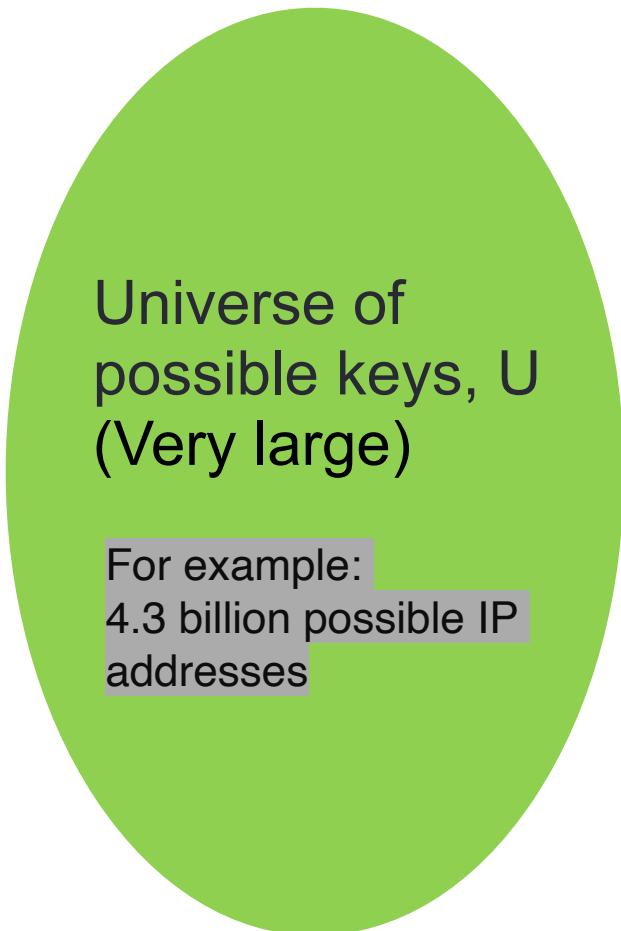
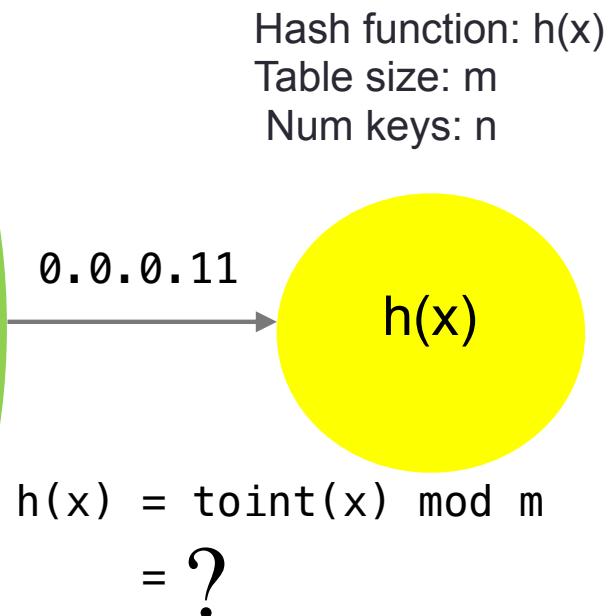
192.168.1.6

$$\begin{aligned} h(x) &= \text{toint}(x) \bmod m \\ &= \text{toint}(192.168.1.6) \bmod 10 \\ &= 3234251782 \bmod 10 \\ &= 2 \end{aligned}$$

- Keep track of evolving set S whose size is much less than the universe of all possible keys
- For example, 200M unique users (~ 5% of all possible IPs)

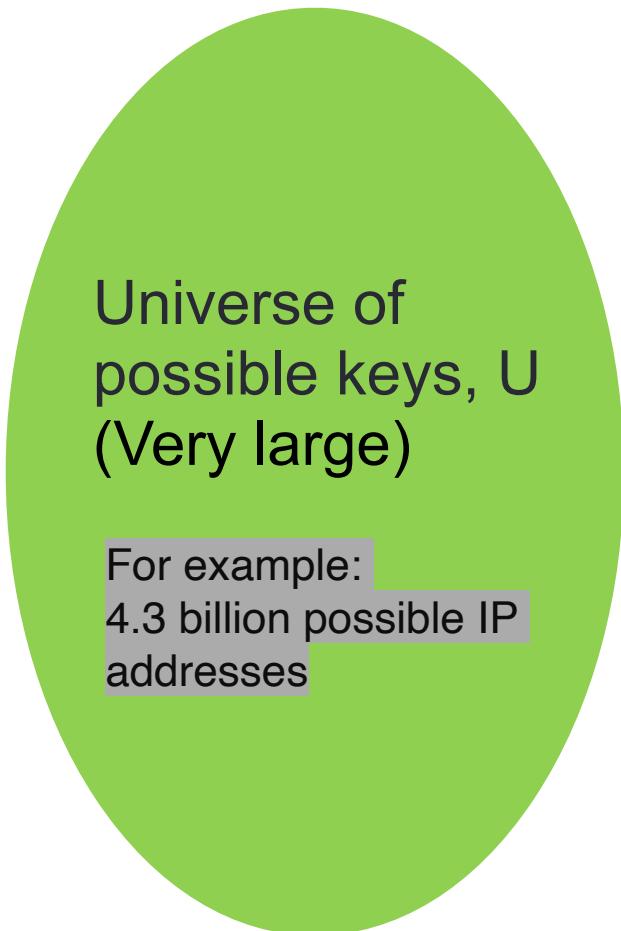
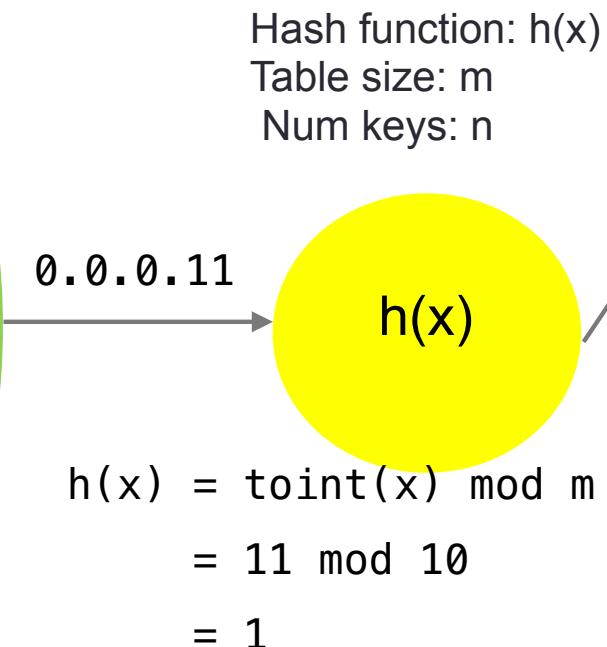
0	
1	
2	192.168.1.6
3	
4	
5	
6	
7	
8	
9	

Insert key 0.0.0.11



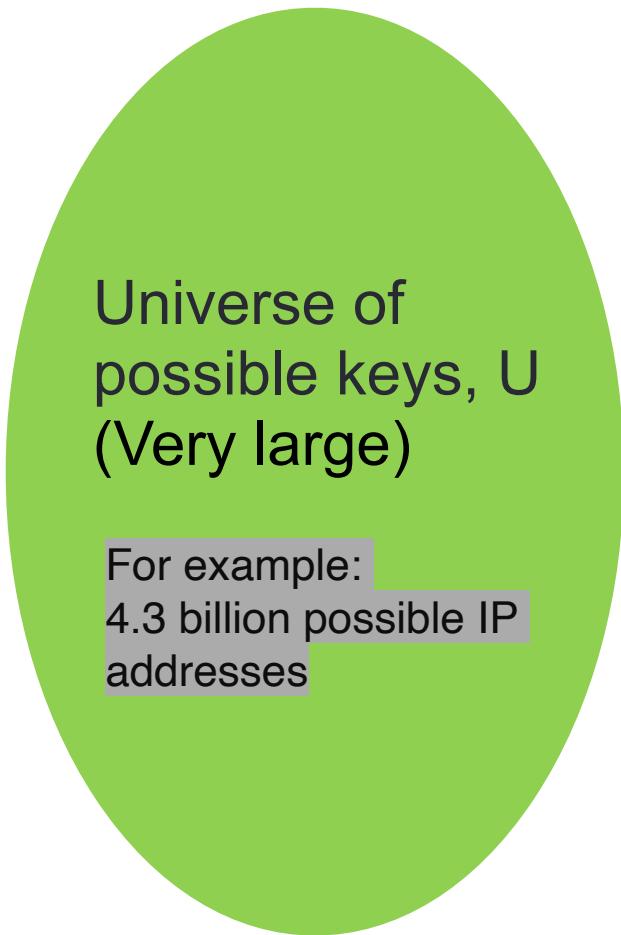
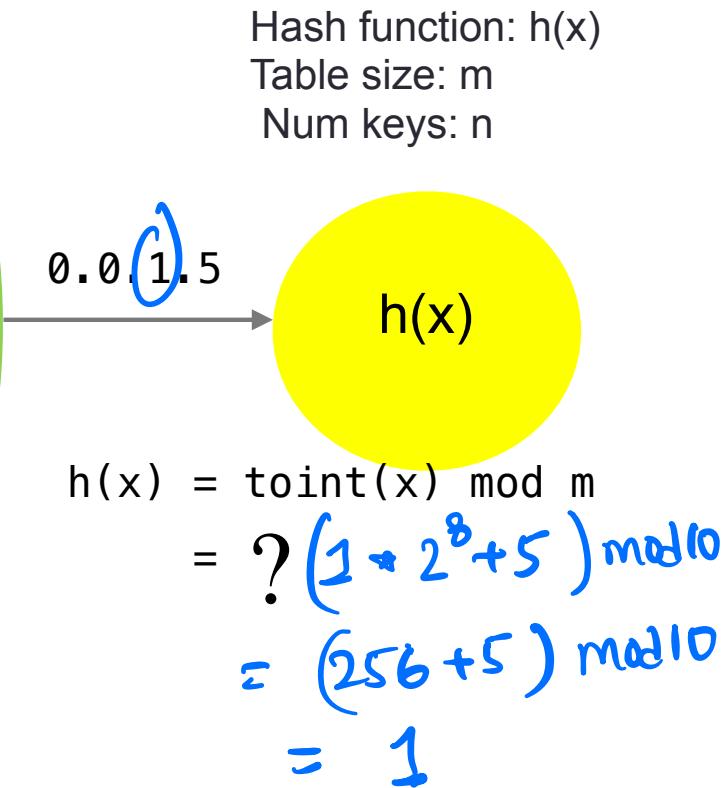
0	
1	
2	192.168.1.6
3	
4	
5	
6	
7	
8	
9	

Insert key 0.0.0.11



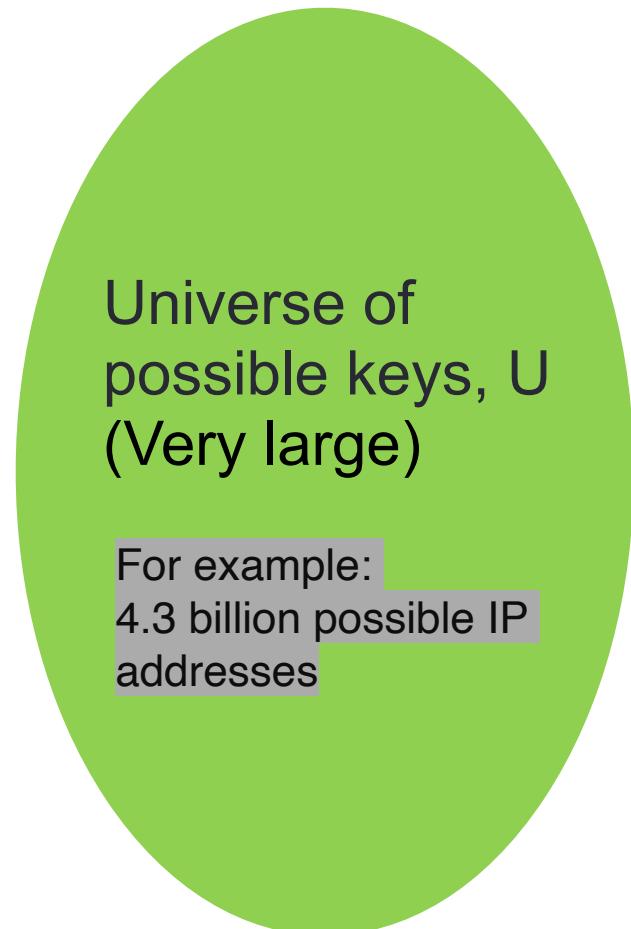
0	
1	0.0.0.11
2	192.168.1.6
3	
4	
5	
6	
7	
8	
9	

Insert 0.0.1.5



0	
1	0.0.0.11
2	192.168.1.6
3	
4	
5	
6	
7	
8	
9	

Insert key 0.0.1.5 results in a collision!



0.0.1.5

$$\begin{aligned} h(x) &= \text{toint}(x) \bmod m \\ &= (256 + 5) \bmod 10 \\ &= 261 \bmod 10 \\ &= 1 \end{aligned}$$

What should happen when two IPs hash to the same index?

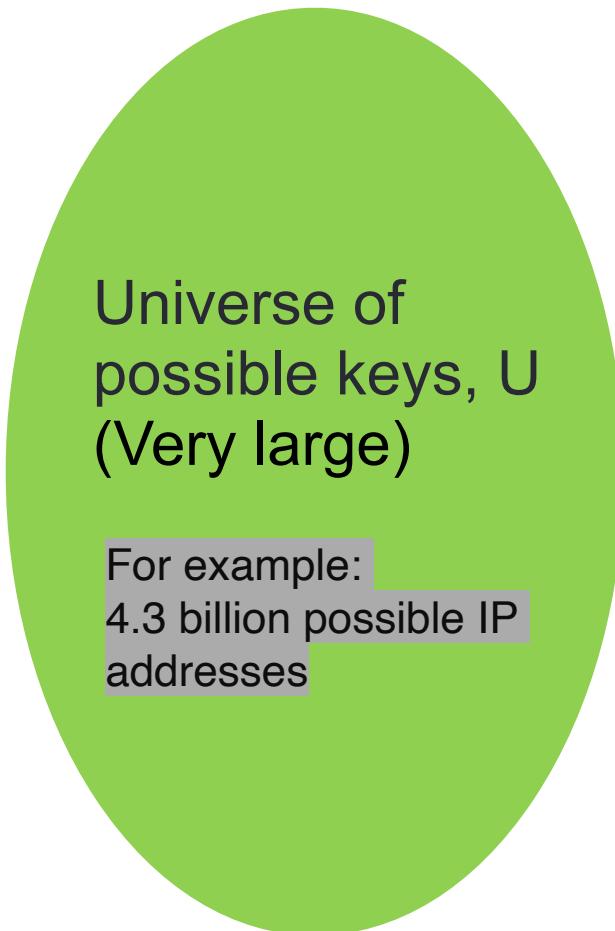
	A	B	C	D
Crash			Chain	Reject

Hash function: $h(x)$
Table size: m
Num keys: n

Collision: Two keys map to the same spot!

0	
1	0.0.0.11
2	192.168.1.6
3	
4	
5	
6	
7	
8	
9	

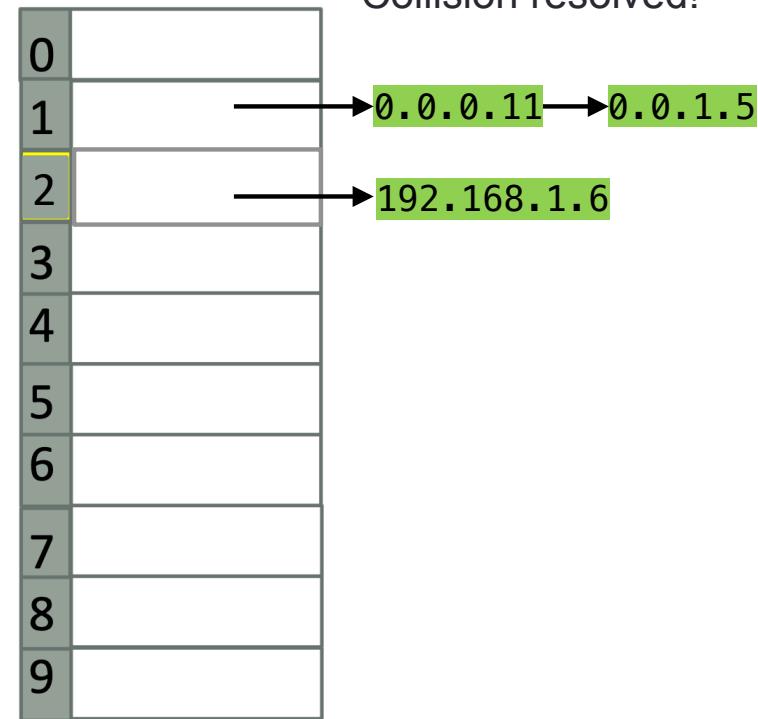
Resolving collisions: separate chaining



0.0.1.5

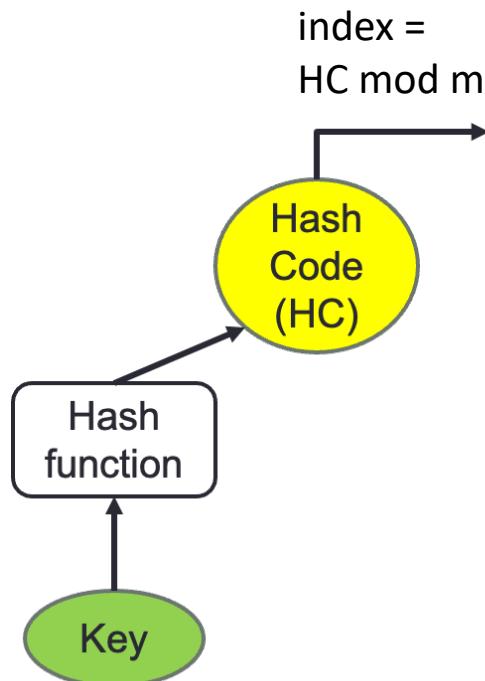
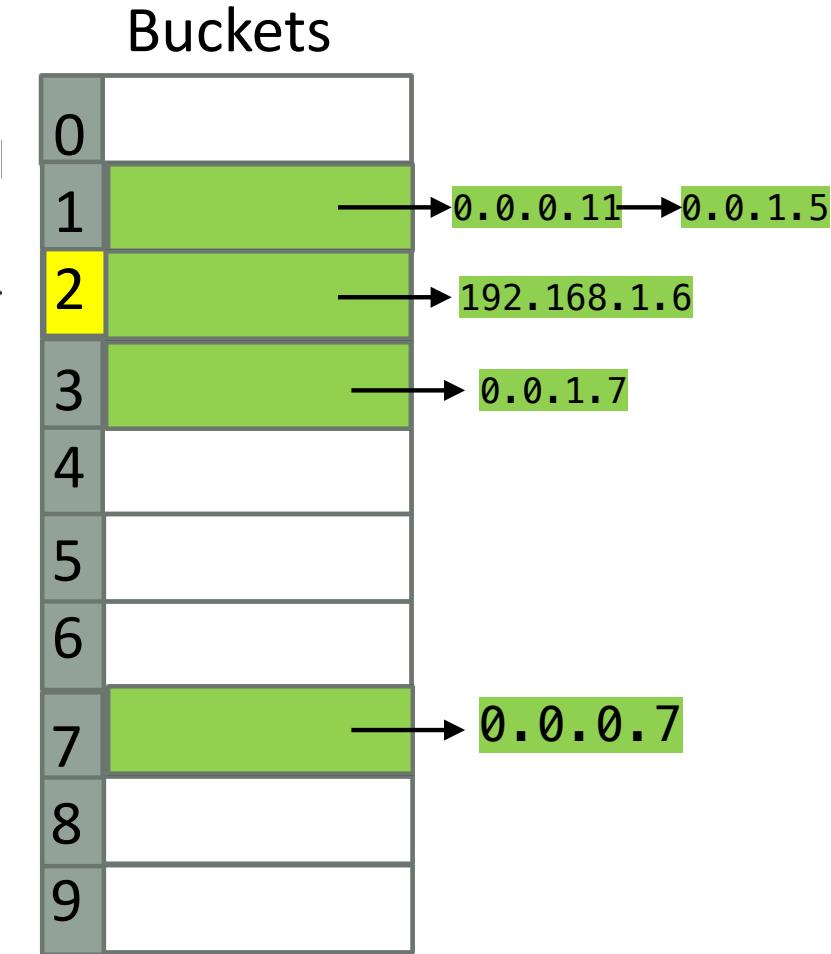
Hash function: $h(x)$
Table size: m
Num keys: n

Buckets



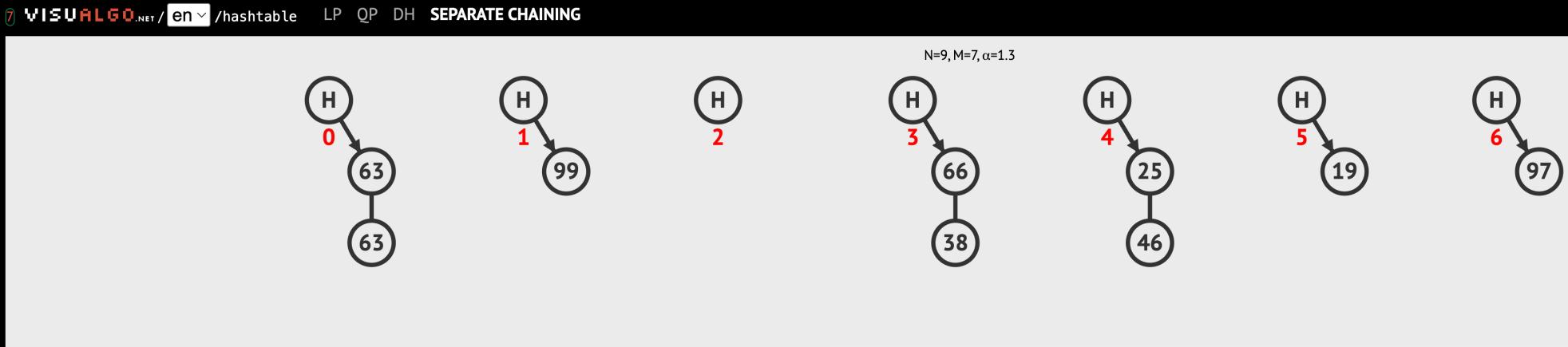
(Refined) Logical model of a hash table

- Keys stored in buckets (vector)
- Keys used to compute index of position in vector
- Each bucket can store multiple keys as a linked list
- Hashtable with separate chaining: Vector of linked list



Hashtable visualization

<https://visualgo.net/en/hashtable>



Goal - Fast search (lookup) and insert

Which data structure should Amazon engineers use to track ~200M unique users by IP addresses?

- A) Set (Balanced BST)
- B) `unordered_set` (Hashtable)
- C) Priority Queue
- D) Queue
- E) Vector with 2^{32} entries (one for each possible IP address)

192 (8 bits)	168 (8 bits)	1 (8 bits)	6 (8 bits)
-----------------	-----------------	---------------	---------------

192.168.1.6 → `uint32_t`: 3234251782

Total IPs: $2^{32} \approx 4.3B$

Design challenges

- Deciding on collision resolution strategy
- Deciding the size of hash table
- Deciding the hash function

Universe of possible keys, U
(Very large)

For example:
4.3 billion possible IP addresses

Keep track of evolving set S whose size is much less than the universe of all possible keys

0	
1	
2	Key
3	
4	
5	
6	
7	
8	
9	

For example, 200M unique users
(~ 5% of all possible IPs)

Can we guarantee good performance?

We implemented a hashtable with separate chaining.

Table size: m

Number of keys: n

Load factor $\alpha = n/m$

Hash function: $h(x) = x \bmod m$

If randomly uniformly selected keys, then “on average” things seem fine.

Expected time to search is $O(\alpha)$ (in practice, choose $\alpha = 1$)

**Can all keys still hash to the same bucket?
(Worst-case scenario, linear search complexity!)**

What's the chance of linear search complexity?

What is the probability that *all* keys hash to the *same* bucket?

Let's say we're inserting $n = 1000$ keys into an empty table with $m = 1000$ buckets.

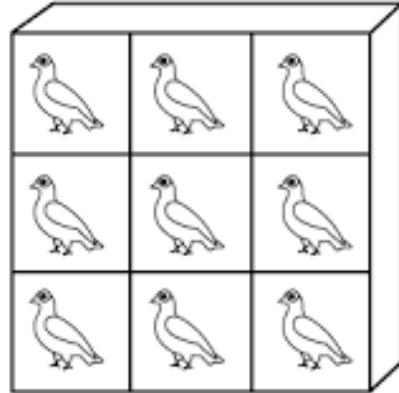
- A. 0
- B. $1/1000$
- C. $1/1000^{999}$
- D. $1/1000^{1000}$
- E. It depends...

- We're using the hash function $h(x) = x \bmod m$
- Keys are chosen independently and uniformly at random
- Hash table uses separate chaining

Is there a hash function that avoids linear search complexity?

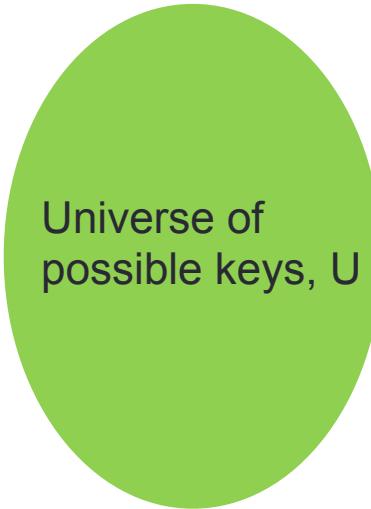
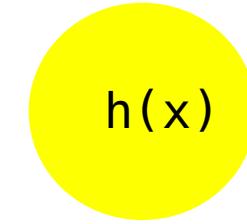
Is there a hash function that avoids linear search complexity?

THE PIGEONHOLE PRINCIPLE



Pigeonhole Principle:

If there are m pigeonholes and $m + 1$ pigeons, at least one pigeonhole has more than 1 pigeon



Generalized Pigeonhole Principle:

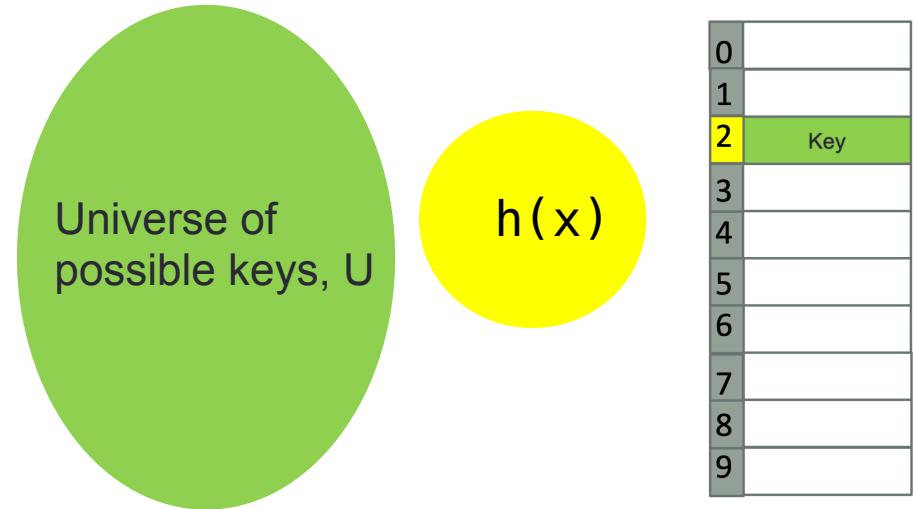
If there are m pigeonholes and $nm + 1$ pigeons, at least one pigeonhole has more than _____ pigeons.

Is there a hash function that avoids linear search complexity?

Theorem: Suppose a hash table of size m is used to store a set S of n keys drawn from the universe U , where $|U| > nm$. Then, *no matter which hash function $h : U \rightarrow \{0,1,2,\dots,m-1\}$ is chosen, there is a set $S \subset U$ of n keys that all map to the same location.*

Proof:

1. Pick any hash function of your choosing.
2. Map all keys of U using h to the table of size m .
3. By the pigeonhole principle, at least one table slot gets at least n keys because $|U| > nm$
4. Choose those n keys as input set S
5. Now h will map S to a single location.



Generalized Pigeonhole Principle:
If there are m pigeonholes and $nm + 1$ pigeons, at least one pigeonhole has more than n pigeons.

What does this mean for real-world applications?

Universal Hash Functions

Main result so far: No single hash function can avoid worst case linear time search complexity!

Main idea behind universal hash functions: Don't fix a single hash function. Choose one randomly from a “good” family of hash functions.

- Imagine an adversary picks **two keys**, x and y .
- You, the algorithm designer, get to **randomly choose** a hash function h from a big family H .
- The hash function is designed so that:
The chance that $h(x) = h(y)$ is **at most $1/m$** .

Example: $h(x) = ax + b \pmod{p}$ where p is a prime number

References

Professor Subhash Suri's CS 130A handout on hash tables:

<https://sites.cs.ucsb.edu/~suri/cs130a/Hashing.pdf>