FAST LOOKUP WITH HASHTABLES
Problem Solving with Computers-I| C++

2
Hastable — Dictionary like data structure

std: :unordered_set<T> — stores unique keys, no duplicates

std::unordered_set<string> countries = {"USA", "France", "India"};
s.insert("Germany");

s.erase("France");

auto found = find("USA");

std: :unordered_map<Key, Value> — stores key-value pairs (like a dictionary)

unordered_map<string, string> capitals= {{"USA", "Washington"}, {"France", “Paris"}};

capitals["Germany"] = "Berlin"; // insert
capitals.erase("France"); // delete
auto found = find("USA"); // find

I
Hashtable for fast lookup

Dictionary-like data structure Blockchain | Likes | Caching | Passwords

Japan : Tokyo . N 1k
USA : Washington

India - New Delhi m

All operations O(1) on average*:
e find
* insert AND 901t
e erase .

*no worst case guarantees but fast in practice!

Source: https://medium.com/@saurabh.bhoy910/stl-unordered-
map—hashtable-c7054b28d@7f

https://medium.com/@saurabh.bhoy910/stl-unordered-map-hashtable-c7054b28d07f
https://medium.com/@saurabh.bhoy910/stl-unordered-map-hashtable-c7054b28d07f
https://medium.com/@saurabh.bhoy910/stl-unordered-map-hashtable-c7054b28d07f

Amazon User Tracking Scenario

Amazon engineers track ~200M unique users by IP addresses during peak
shopping season. Each website access requires checking if the IP is in the list; if
not, it's added. This helps analyze user interest and personalize recommendations.

amaZon
N

Which data structure should Amazon engineers use to track ~200M unique users
by IP addresses?

5
Goal - Fast search (lookup) and insert 0-002— 2

Which data structure should Amazon engineers use to track ~200M unique users
by IP addresses? O) 1P & Tnteger
6 B
22"+ (63 25+ 4. 22 + 6

» Keys: IP addresses (32 bits) 192 168 4 6
* example : 192.168.1.6 (8 bits) (8 bits) (8 bits)
« 232 ~ 4.3B possible IPs :
192.168.1.6 - uint32_t: (323425178
« 200M (4.7%) unique users B ————g
(2 + 69l 1<<8 + 6)

Can we achieve O(1) search?

O.P-o.?‘

T30 N %,
o 1 (3 2224171992

Nalve approach: 2°4-sized vector

If you had to track unique IPs out of 4.3 billion (2"32) possibilities, how much
memory do you think you'd need if you used a direct index approach?

2M0 bytes = 1KB, 2*20 bytes = 1 MB, 2230 bytes = 1GB
Assuming 1 bit per IP, we need 2”32 bits = 2* 29 bytes = 512 MB

Assuming 4 bytes per IP =512 * 32 MB = 16 GB

Setup fOr haSh tableS - Keep track of evolving set S whose

size is much less than the universe of
all possible keys

* For example, 200M unique users
(~ 5% of all possible IPs)

Insert key 1 92 1 68 1 6 » Keep track of evolving set S whose

size is much less than the universe of
all possible keys

* For example, 200M unique users
(~ 5% of all possible IPs)

Hash function: h(x)
Table size: m
Num keys: n

192.168.1.6 /
> h(X)

h(x) = toint(x) mod m

= t0int(192.168.1.6) mod 10
= 3234251782 mod 10

= 2

e
Insert key 0.0.0.11

Hash function: h(x)
Table size: m
Num keys: n

0.0.0.11

> h(X)

h(x) = toint(x) mod m

=7

Insert key 0.0.0.11

Hash function: h(x)
Table size: m

Num keys: n
0.0.0.11
> h(X)
h(x) = toint(x) mod m

11 mod 10
1

Insert 0.0.1.5

Hash function: h(x)
Table size: m
Num keys: n

0.@(1)5 h(x)

>

h(x) toint(x) mod m

I
~>
>
4
(&

+QP
wy

z
&
(=)

e
Insert key 0.0.1.5 results in a collision!

What should happen when two IPs hash to the same index?
A B C D
Crash Overwrite Chain Reject

Hash function: h(x)
Table size: m

Num keys: n x 0.0.1.5
Collision: Two
0.0.1.5 keys map to the
> h(x) same spot!

h(x) = toint(x) mod m
= (256 + 5) mod 10
= 261 mod 10
=1

e
Resolving collisions: separate chaining

Buckets
Hash function: h(x) Collision resolved!
Table size: m
Num keys: n —0.0.0.11—»0.0.1.5

i3 —*>192.168.1.6

0.0.1.5

> h(X)

e
(Refined) Logical model of a hash table

Buckets
 Keys stored in buckets (vector)
index =
 Keys used to compute index of HC mod m
position in vector —

« Each bucket can store multiple
keys as a linked list

» Hashtable with separate
chaining: Vector of linked list

Hash
function

Hashtable visualization https://visualgo.net/en/hashtable

WISUALG O/ g /hashtable LP QP DH SEPARATE CHAINING

N=9,M=7,a=1.3

° g
&) O O

https://visualgo.net/en/hashtable

Goal - Fast search (lookup) and insert

Which data structure should Amazon engineers use to track ~200M unique users
by IP addresses?

A) Set (Balanced BST)

B) unordered_set (Hashtable)
C) Priority Queue

D) Queue

E) Vector with 2232 entries (one for each possible IP address)

192 168 1 6
(8 bits) (8 bits) (8 bits) (8 bits)

192.168.1.6 - uint32_t: 3234251782
Total IPs: 2732 = 4.3B

Design challenges

Keep track of evolving set S
whose size is much less than the
universe of all possible keys

* Deciding on collision resolution strategy
* Deciding the size of hash table
* Deciding the hash function

Universe of
possible keys, U
(Very large)

For example, 200M unique users
(~ 5% of all possible IPs)

Can we guarantee good performance?

We implemented a hashtable with separate chaining.

Table size: m
Number of keys: n

Load factor a = n/m
Hash function: h(x) = x mod m

If randomly uniformly selected keys, then “on average” things seem fine.
Expected time to search is O(a) (in practice, choose a = 1)

Can all keys still hash to the same bucket?
(Worst-case scenario, linear search complexity!)

What's the chance of linear search complexity?

What is the probability that all keys hash to the same bucket?

Let’'s say we're inserting n = 1000 keys into an empty table with m = 1000 buckets.
A0

B. 1/1000
C.1/1000°%°

D. 1/1000'%
E. It depends...

* We're using the hash function h(x) = x mod m

» Keys are chosen independently and uniformly at random

» Hash table uses separate chaining

Is there a hash function that avoids linear search complexity?

Is there a hash function that avoids linear search complexity?

NN
‘ h(x)
é NI
Pigeonhole Principle: Generalized Pigeonhole Principle:
If there are m pigeonholes and If there are m pigeonholes and
m + 1 pigeons, at least one nm + 1 pigeons, at least one pigeonhole

pigeonhole has more than 1 pigeon has more than pigeons.

Is there a hash function that avoids linear search complexity?

Theorem: Suppose a hash table of size m is used to

0
store a set S of n keys drawn from the universe U, 1
where | U| > nm. Then, no matter which hash function z ©
h:U— {0,1,2,...m — 1}is chosen, there is a set Universe of h(x) 4
S C U of n keys that all map tp the same location. possible keys, U 2

7
Proof: 8

9

1. Pick any hash function of your choosing.

2. Map all keys of U using h to the table of size m. _
3. By the pigeonhole principle, at least one table slot Generalized Pigeonhole Principle:

gets at least n keys because |U| > nm If there are m pigeonholes and

4. Choose those n keys as input set S nm + 1 pigeons, at least one pigeonhole
5. Now h will map S to a single location. has more than n pigeons.

What does this mean for real-world applications?

Universal Hash Functions

Main result so far: No single hash function can avoid worst case linear time
search complexity!

Main idea behind universal hash functions: Don't fix a single hash
function. Choose one randomly from a “good” family of hash functions.

* Imagine an adversary picks two keys, x and y.

* You, the algorithm designer, get to randomly choose a hash function h
from a big family H.

e The hash function is designed so that:
The chance that h(x) = h(y) is at most 1/m.

Example: h(x) = ax + b (mod p) where p is a prime number

B
References
Professor Subhash Suri’'s CS 130A handout on hash tables:

https.//sites.cs.ucsb.edu/~suri/cs130a/Hashing.pdf

https://sites.cs.ucsb.edu/~suri/cs130a/Hashing.pdf

