
 
RUNNING TIME ANALYSIS
Problem Solving with Computers-II
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Problem: Fibonacci Numbers

Definition: 
The Fibonacci numbers are the sequence 
1, 1, 2, 3, 5, 8, 13, 21, 34, 55,… 
Defined by 
F0 = F1 = 1 

Fn = Fn-1 + Fn-2 for n ≥ 2 

Problem: Given n, compute Fn.
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Which implementation is significantly faster ?

F(int n){ 
    Initialize A[0 . . . n] 
    A[0] = A[1] = 1 
     
    for i = 2 : n 
      A[i] = A[i-1] + A[i-2] 
     
    return A[n] 
}

A.

F(int n){ 
   if(n <= 1) return 1 
   return F(n-1) + F(n-2) 
}

B. 

C. Both are almost equally fast
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Which implementation is significantly faster ?

F(int n){ 
    Initialize A[0 . . . n] 
    A[0] = A[1] = 1 
     
    for i = 2 : n 
      A[i] = A[i-1] + A[i-2] 
     
    return A[n] 
}

A.

F(int n){ 
   if(n <= 1) return 1 
   return F(n-1) + F(n-2) 
}

B. 

C. Both are almost equally fast

The “right” question is: How does the running time grow? 
E.g. How long does it take to compute F(200) recursively? 
….let’s say on….a supercomputer that can compute 40 trillion operations per sec
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 It will take  approximately 292 seconds to compute F200. 

Time in seconds	 	 Interpretation 
	 210 	 	 	  	 17 minutes 

	 220	 	 	 	 12 days 

	 230	 	 	 	 32 years 

	 240	 	 	 	 35000 years  
                                                  (cave paintings) 
   

  250                                                                  35 million years ago  
                                                    

  270                                                              Big Bang  

How long does it take to compute Fib(200) recursively? 
….let’s say on…. a supercomputer that runs 40 trillion operations per second
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What is the main takeaway so far?



 It will take  approximately 292 seconds to compute F200. 

Time in seconds	 	 Interpretation 
	 210 	 	 	  	 17 minutes 

	 220	 	 	 	 12 days 

	 230	 	 	 	 32 years 

	 240	 	 	 	 35000 years  
                                                  (cave paintings) 
   

  250                                                                  35 million years ago  
                                                    

  270                                                              Big Bang  

How long does it take to compute Fib(200) recursively? 
….let’s say on…. a supercomputer that runs 40 trillion operations per second

Questions of interest: 
• Why is Algo A so slow? 
• How do we quantify efficiency? 
• Is Algo A better than Algo B? 
• When will my code finish running?
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Why So Slow?

Too many recursive calls.
F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(0)F(1)F(0)F(1)F(1)F(2)

F(1) F(0)

F(int n){ 
   if(n <= 1) return 1 
   return F(n-1) + F(n-2) 
}
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Bottom Line
    We want to analyze the impact of the algorithm on running time, 

separate from other hardware dependent artifacts that affect time: 
• CPU speed 
• Memory architecture 
• Compiler optimizations 
• Background processes 

Too much to consider for every analysis if we analyzed absolute time 
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Bottom Line
    We want to analyze the impact of the algorithm on running time, 

separate from other hardware dependent artifacts that affect time: 
• CPU speed 
• Memory architecture 
• Compiler optimizations 
• Background processes 

Too much to consider for every analysis if we analyzed absolute time 

Big idea: Count operations instead of absolute time!
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• Every computer can do some primitive operations in constant time: 
• Data movement (assignment) 
• Data load/store (accessing an element of an array) 

• Control statements (branch, function call, return) 

• Arithmetic and logical operations 

• By inspecting the pseudo-code, we can count the number of primitive 
operations executed by an algorithm 

• Assumption: each primitive operation takes a constant amount of time

Big Idea: Count primitive operations instead of absolute time!

Machine model used for analysis
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F(int n){ 
    Initialize A[0 . . . n] 
    A[0] = A[1] = 1 
     
    for (int i = 2; i <= n ; n++) 
     A[i] = A[i-1] + A[i-2] 
     
    return A[n] 
}

Iterative Fibonacci Algorithm
Lets compute T(n) = number of primitive operations to execute F(n)  

2 ops
1 op1 op 2 ops

2 ops2 ops

1 op T(n) =
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F(int n){ 
    Initialize A[0 . . . n] 
    A[0] = A[1] = 1 
     
    for i = 2 : n 
     A[i] = A[i-1] + A[i-2] 
     
    return A[n] 
}

Iterative Fibonacci Algorithm

2 lines

2(n-1) lines

1 line
T(n) = 2n+1

Lets compute T(n) = number of lines of code F(n) needs to execute. 
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Effect of constant factors 

For the iterative fib, we derived two expressions for the running time 

T(n) = 10n - 3 
T(n) = 2n + 1

Discuss: how much do the constant factors matter as n gets large? 
• Think about 10n - 3 vs. 10n and 2n + 1 vs. 2n 
• What about 10n vs 2n? 
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Analogy: Types of roads and orders of growth
Think of algorithms as cars traveling a distance.  
• Running time T(n): Effort (or fuel) needed to complete the trip 
• Input sizen n: The distance the car needs to go

10n         vs.        2n

  SUV on a highway Sedan on a highway

Both cars take a similar level of effort (linear) when traveling on a highway. 
Think about effort to drive on a smooth highway vs. winding mountain vs. off-road jungle trek
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Orders of growth

An order of growth is a set of functions 
whose (asymptotic) growth behavior is 
considered equivalent.  

For example, 2n, 100n and n belong to 
the same order of growth (linear) 

Which of the following functions has a 
higher order of growth? 
A. 50n 

B. 2n2

Analogy: Trips that need a similar 
effort have the same order of growth 
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Big-O notation
• Big-O notation provides an asymptotic upper bound on the running time  
• Its like saying “No matter how bad it gets, the effort won’t exceed this level of difficulty” 
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Definition of Big-O
f(n) and g(n) map positive integer inputs to positive reals. 

We say f = O(g) if there is a constant c > 0  and k > 0 such that 
 f(n) ≤ c · g(n) for all n >= k. 

f = O(g)  
means that “f grows no faster than g”
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Express in Big-O notation
1. 10000000  
2. 3n      
3. 6n-2      
4. 15n + 44 
5. 50nlog(n) 
6. n2     
7. n2-6n+9   
8. 3n2+4*log(n)+1000 
9. 3n + n3  +log(3*n)

For polynomials, use only leading term, ignore coefficients: linear, quadratic

Common sense rules 
1. Multiplicative constants can be omitted: 

14n2 becomes n2 .  

2. na dominates nb if a > b: for instance, n2 
dominates n.  

3. Any exponential dominates any polynomial: 
3n dominates n5 (it even dominates 2n ).
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What is the Big O running time of sum()?
/* n is the length of the array*/ 
int sum(int arr[], int n) 
{   
     int result = 0;   
     for(int i = 0; i < n; i+=2)     
           result+=arr[i];   
     return result; 
} A. O(n2) 

B. O(n) 
C. O(n/2) 
D. O(log n) 
E. None of the above
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What is the Big O running time of sum()?
/* n is the length of the array*/ 
int sum(int arr[], int n) 
{   
      int result = 0;  
      for(int i = 1; i < n; i*=2)     
              result+=2*arr[i];   
       return result; 
} A. O(n2) 

B. O(n) 
C. O(n^3) 
D. O(log n) 
E. None of the above
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Why Big-O is useful in analysis of 
recursive fib?

Derive T(n) = O(2n)

F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(0)F(1)F(0)F(1)F(1)F(2)

F(1) F(0)
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F(int n){ 
   if(n <= 1) return 1 
   return F(n-1) + F(n-2) 
}



Emprical Analysis: Recursive Fibonacci Running Time
For recursive fibonacci algorithm, we derived that T(n) = O(2n) 
How well does this represent practice? 
Observation: Time grows fast — roughly 1.6x per n.  
Hypothesis: Exponential growth, like T(n) = a * bn? 

 n    Time (ms) 
  40   788.09 
  41   1270.18 
  42   2070.68 
  43   3391.74 
  44   6411.54 
  45   9589.44 
  50  100329.11 

Tested on my machine 
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Confirming Exponential Growth

T(n) = a * bn → log₂(T(n)) =
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Confirming Exponential Growth

Calculate: 
  log₂(788.09) ≈ 9.62 (n=40) 
  log₂(100329.11) ≈ 16.61 (n=50) 

Slope = (16.61 - 9.62) / (50 - 40) ≈ 0.70 

 b ≈ 20.7  ≈ 1.62 ≈ φ (1.618) 
 a ≈ 2-18.39 

T(n) = a * bn → log₂(T(n)) = log₂(a) +n log₂(b)

Lab01: Do a similar empirical analysis for the 3-sum problem!! 
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Comparing predictions for T(200)

How does our prediction for T(200) compare with Prof. Dasgupta’s (292 s)?

• Our empirical result: T(n) ≈ 2(-18.39+0.7n)  ms ≈ 2(-28.39+0.7n) s
• Our prediction for T(200) ≈ 2111  s
• Dasgupta’s prediction     = 292 s
• Our predicted running time is larger by a factor of 219 = 5* 105

• What can account for the difference in the results? 

Lab01: Do a similar empricial analysis for the 3-sum problem!! 
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Next time
• Abstract Data Types (OOP implementation of LinkedList)

Credits and references: 
  
Slides based on presentations by Professors Sanjoy Das Gupta and Daniel Kane at UCSD 
https://cseweb.ucsd.edu/~dasgupta/book/toc.pdf 
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