RUNNING TIME ANALY SIS

Problem Solving with Computers-I| C
| ' GitHub
309
% ‘\:‘:&C:qm:i:ij;n; " ,'5&;;:-',;:‘,;_ 4 @

1|

Problem: Fibonacci Numbers

ﬁefinition:
The Fibonacci numbers are the sequence
1,1, 2,3,5,8, 13, 21, 34, 55,...
Defined by
Fo=F =1

Q =F ,+F ,forn=2

o\

Problem: Given n, compute F_.

Which implementation is significantly faster ?
A. B.

F(int n){
if(n <= 1) return 1

F(int n){
Initialize A[OQ . . .
A[0] = A[1] =1

return F(n-1) + F(n-2)

}

for 1 =2 : n

Ali] = A[i-1] + A[i-2]

return A[n]

C. Both are almost equally fast 1

T
Which implementation is significantly faster ?

A. B.

F(int n){
Initialize A[OQ . . .
A[0] = A[1] =1

F(int n){
if(n <= 1) return 1

return F(n-1) + F(n-2)

for 1 =2 : n
Ali] = A[i-1] + A[i-2]

A
C. Both are almost equally fast return Aln]

The “right” question is: How does the running time grow?
E.g. How long does it take to compute F(200) recursively?
....let's say on....a supercomputer that can compute 40 trillion operations per sec

How long does it take to compute Fib(200) recursively?
....let's say on.... a supercomputer that runs 40 trillion operations per second

It will take approximately 292 seconds to compute F,,,,.

Time in seconds Interpretation
210 17 minutes
220 12 days
230 32 years
240 35000 years

(cave paintings)

250 35 million years ago

270 Big Bang What is the main takeaway so far?

How long does it take to compute Fib(200) recursively?
....let's say on.... a supercomputer that runs 40 trillion operations per second

It will take approximately 292 seconds to compute F,,. ‘ %ib'd'\
> Theoreited RS = D)
Time in seconds Interpretation Questions of interest: \ béf‘%bw
. o
;z 1; g"”“tes + Why is Algo A so slow? & P e
ays) I
230 32 years :_I(X\; dkobe ?tua;:lfy i\i‘lfmle;;:y.
240 35000 years S AIgO | etler an. .gO ! |
(cave paintings) * When will my code finish rungng’g
7 Aot)
250 e S

270

35 million years ago Th o\ X .0\7 %(0\3‘%%
VY

Big Bang

Why So Slow?

F(int n){
Too many recursive calls. if(n <= 1) return 1
return F(n-1) + F(n-2)

\ _—

=il F(3)

F(3)| (F(2) F(2 F(1)

(I FR)|[F@)| | F)|[FO)|] F(1)| | F(0)

F(1)|| F(O)

Bottom Line

We want to analyze the impact of the algorithm on running time,
separate from other hardware dependent artifacts that affect time:

e CPU speed

« Memory architecture
« Compiler optimizations
e Background processes

Too much to consider for every analysis if we analyzed absolute time
e ——

Bottom Line

We want to analyze the impact of the algorithm on running time,
separate from other hardware dependent artifacts that affect time:

e CPU speed

« Memory architecture
« Compiler optimizations
e Background processes

Too much to consider for every analysis if we analyzed absolute time

Big idea: Count operations instead of absolute time!

9

I
Machine model used for analysis

Big Idea: Count primitive operations instead of absolute time!

- Every computer can do some primitive operations in constant time:
- Data movement (assignment)
- Data load/store (accessing an element of an array)
- Control statements (branch, function call, return)
- Arithmetic and logical operations

- By inspecting the pseudo-code, we can count the number of primitive
operations executed by an algorithm

- Assumption: each primitive operation takes a constant amount of time

Iterative Fibonacci Algorithm

Lets compute T(n) = number of primitive operations to execute F(n)

F(int n)A{ g
Initialize A[@ . . . n] 1lop } % 50@

AlO] = A[1] = 1 It Zops = (o)
1op lop 2,0ps | oop TUuhd

for (lnt 5] =—2; 1 <= n ; .++)% NI
ALl = A[i-1] + Ali-2] (-0 (32D

2 ops

0@
)rT(n) 5 b(oDT

= \Oﬂ"b

11

Iterative Fibonacci Algorithm
< anning e
Lets compute @ = number of lines of code F(n) needs to execute.

F(int n){
Initialize A[O . . .

Al0] = A[1] = 1 2 lines

/

for 1 =2 : n
Ali]l = A[i-1] + Ali-2] & 2(n-1) lines

return Aln] :}- 1 line
(T(n) =2n+1 ‘

Effect of constant factors

For the iterative fib, we derived two expressions for the running time

T(n) = _
T(n) =(2n)+1%
Discuss: how much do the constant factors matter as n gets large?

 Think about 10n - 3 vs. 10n and 2n + 1 vs. 2n
 What about 10n vs 2n?

0n Vs 2D

T
Analogy: Types of roads and orders of growth

Think of algorithms as cars traveling a distance.
* Running time T(n): Effort (or fuel) needed to complete the trip
* Input sizen n: The distance the car needs to go

@ VS. 2N

SUV on a highway Sedan on a highway

Both cars take a similar level of effort (linear) when traveling on a highway.

Think about effort to drive on a smooth highway vs. winding mountain vs. off-road jungle trek

= ‘\’.ﬁv
nv 2

effort have the same order of growth

80

nl2rm? nlogan n
100717~
Orders of growth w1 o7
Analogy: Trips that need a similar 90 i S

An order oé?growth is a set of functions

whose (asymptotic) growth behavior is
considered equivalent.

For example, @ 100n and n belong to
the same order of growth (linear)

Which of the following functions has a
higher order of growth?

A. 50n
g
B. 2n2

L

1

60

70

50
40
30
20
10

0

" n——>

e

[50)
2 !
N=\ s ?
n —7?
“ ‘ | N
T aVe GO Quodxoli e Nﬂ{r‘{;\)\(\ &g\“m&(coitiods

Neralke, O Rneos %uv\cﬁcm

ODders ot 6(%)-“/\
Sy 7 men 2 > dogn > 1

Big-O notation

* Big-O notation provides an asymptotic upper bound on the running time
- Its like saying “No matter how bad it gets, the effort won’t exceed this level of/difficulty”

T = nr logn Uppec-bound >
A
’r(nB = OCWI) .
\ f Cons+ cort
\Ne \DC\K A'
we Tean: n> K
T § C’ {W

Definition of Big-O

f(n) and g(n) map positive integer inputs to positive reals. ©
O
We say f = O(g) if there is a constant ¢ > 0 and k > 0 such that A

f(n) <c - g(n) for all n >= k. o 00@‘\’“& ;(
Ser O bﬁ%“ |

f=0(g) et 7
means that “f grows no faster than g”

O35, sy, &
m> by _

T(n) = O yneans T@%O(ﬂ)
TGo) = O(n)

%
(/,"(\

&Y

%

Express in Big-O notation

8.
9.

1
2
3
4.
5
6. N2
7.

10000000 = OC1)

3n B OCn) Common sense rules
' O (™) 1. Multiplicative constants can be omitted:
| (132;12+ 14 - OCnD 14n2 becomes n2 .
- 50nlog(n) ;: Oln L n) 2.na dominates nb if a > b: for instance, n?
_ 1) dominates n.
2.6n+9 ~ OC"\Z> 3. Any exponential dominates any polynomial:

3n2+4*log()+1000 DCﬂﬂ 3" dominates nd (it even dominates 2").

3n+ n3 +log(3*n) C’) 3)

For polynomials, use only leading term, ignore coefficients: linear, quadratic

What is the Big O running time of sum()? 7(n"~

/* n 1is the length of the arrayx/
int sum(int arr[], int n)

{
int result = 0;
for(int 1 = 0; 1 < n; i+=2)
result+=arr[i];
, return result; . éO(nz)
() OH7 (®om
1= o() + % C C. O(n/2)
_ D(ﬂ«) D. O(log n)

. None of the above

What is the Big O running time of sum()? “muwer

e
/* n is the length of the arrayx/ 2 N 9.
int sum(int arr([], int n) 2 92
{
- . 13
int result = 0;
for(int 1 = 1; i < n; ix=2) > D 2
result+=2xarr([i]; 2 —
return result; r j
1 A. O(n

.o g —32
LMOMW B, volue OJD\ ‘QQ O(n"3) k

" }\O(ﬂb @O(Iogn

(5{6 WWK‘V }7“3@ {;ﬁﬂ%ﬁ% RN . None of the above

Loop will oot when oo vaviade 110 bewomes

%mtaw W 0f @qm oo

9

the K™ Tiomion /v\)\r\é\ﬂ ‘ >/ O

Lef's cSime 1oop €S Ofter
"r\um\oeﬂ\(\D

Mug in Vol)T 0 ferms g ierede
Y

Sz

“Todke \og) (bese 1) on botn ¢de

k,_| >/ QO%L(Y\B

k> ”%89(\)'*\/

uPP@V boumd on the Dumbev O/’k’l\\’mﬂ’

Tl & < 3 cz.(gosm+\)+c3
~00) 4 OCuwgw) TOO)

; O\Chﬁ%m}

Why Big-0 is useful in analysis of
recursive fib?

. n F(int n){
Derive T(n) = O(2") %{}wﬁ‘ if(n <= 1) return_1

TCV\T: c. M(ﬂ) + (o, \F(S) \ return F(n-1) + F(n-2)

7

Ve &
/i \ e Pt
F.(3) F.(Z) F,(Z) E(l) %fag?emm

e [
F2)][F@)] [FO][FO)][FD)] [Flo)

5’1) F(0) \L/'

number QF fandadn ol Meeded B oot TV

leve denote Aok Dy My W il
\QQoef vound M) bj aoé‘\\\cj N\ V{4 f%)w\dmf\ allc Y
A ol bfﬂONj tee.
- ws)

fpee UYL) levd ©

Eowplc of o full Difarty , "
Iy levdd C\(\ﬁ@) y L
% /R D/ >\(\k¢\3
Dlanh
a0 SN DDA

S 2

Note Ynax N ey O Nodes OX level) |
by e i Of osO B

: orfr T el
o nades v o e

9y gl ¥ 2"
2 9\
¢O(Z) \,(1,)
T = M) T2 (o conclans C
/c Cs Omj‘) x (n

Emprical Analysis: Recursive Fibonacci Running Time

For recursive fibonacci algorithm, we derived that T(n) = O(2n)
How well does this represent practice?
Observation: Time grows fast — roughly 1.6x per n.

Hypothesis: Exponential growth, like T(n) =a * bn?
n Time (ms)

Ratios between consecutive n:

40 788.09

41 1270.18 e n = 41to042:2070.68/1270.18 ~ 1.63
42 2070.68 e n =42t043:3391.74/2070.68 ~ 1.64
43 3391.74 e n = 43to 44:6411.54/3391.74 ~ 1.89
44 6411.54 n = 44 to 45: 9589.44/6411.54 ~ 1.50
45 9589.44 e Average: ~1.66

50 100329.11
Tested on my machine

22

Confirming Exponential Growth

T(n) =a* b —log,(T(n)) =

Confirming Exponential Growth

T(n) =a*br— |092(T(n)) = |ng(a) +N |ng(b) Log: of Running Time vs. Input Size

17

® Data
—— Fit: slope = 0.70

Calculate:
log,(788.09) = 9.62 (n=40)
log,(100329.11) = 16.61 (n=50)

16 -
15 A

14

Slope = (16.61 - 9.62) / (50 - 40) = 0.70

logz2(T(n))

13 A

b =207 ~1.62= ¢ (1.618)
q = 2-18.39 =

10 A

40 42 44 46 48 50
Input Size (n)

Lab01: Do a similar empirical analysis for the 3-sum problem!!

Comparing predictions for T(200)

How does our prediction for T(200) compare with Prof. Dasgupta’s (292 s)?
« Our empirical result: T(n) = 2(-18.39+0.7n) mg =~ 2(-28.39+0.7n) g

« Our prediction for T(200) = 2111 s

- Dasgupta’s prediction =292sg

* Our predicted running time is larger by a factor of 219 = 5* 105

« What can account for the difference in the results?

Lab01: Do a similar empricial analysis for the 3-sum problem!!

Next time

- Abstract Data Types (OOP implementation of LinkedList)

Credits and references:

Slides based on presentations by Professors Sanjoy Das Gupta and Daniel Kane at UCSD
https://cseweb.ucsd.edu/~dasgupta/book/toc.pdf

https://cseweb.ucsd.edu/~dasgupta/book/toc.pdf

