

RUNNING TIME ANALYSIS

Problem Solving with Computers-II

2

C++

```
#include <iostream>
using namespace std;
int main(){
    cout<<"Hola Facebook\n";
    return 0;
}
```


Problem: Fibonacci Numbers

Definition:

The Fibonacci numbers are the sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55,...

Defined by

$$F_0 = F_1 = 1$$

$$F_n = F_{n-1} + F_{n-2} \text{ for } n \geq 2$$

Problem: Given n , compute F_n .

Which implementation is significantly faster?

A.

```
F(int n){  
    if(n <= 1) return 1  
    return F(n-1) + F(n-2)  
}
```

B.

```
F(int n){  
    Initialize A[0 . . . n]  
    A[0] = A[1] = 1  
  
    for i = 2 : n  
        A[i] = A[i-1] + A[i-2]  
  
    return A[n]  
}
```

C. Both are almost equally fast

Which implementation is significantly faster?

A.

```
F(int n){  
    if(n <= 1) return 1  
    return F(n-1) + F(n-2)  
}
```

B.

```
F(int n){  
    Initialize A[0] . . . n  
    A[0] = A[1] = 1  
  
    for i = 2 : n  
        A[i] = A[i-1] + A[i-2]  
  
    return A[n]  
}
```

C. Both are almost equally fast

The “right” question is: How does the running time grow?

E.g. How long does it take to compute $F(200)$ recursively?

....let's say on....a supercomputer that can compute 40 trillion operations per sec

How long does it take to compute $\text{Fib}(200)$ recursively?

....let's say on.... a supercomputer that runs **40 trillion operations per second**

It will take approximately **2^{92} seconds** to compute F_{200} .

Time in seconds	Interpretation	
2^{10}	17 minutes	
2^{20}	12 days	
2^{30}	32 years	
2^{40}	35000 years (cave paintings)	
2^{50}	35 million years ago	
2^{70}	Big Bang	What is the main takeaway so far?

How long does it take to compute $Fib(200)$ recursively?

....let's say on.... a supercomputer that runs 40 trillion operations per second

It will take approximately 2^{92} seconds to compute F_{200} .

Time in seconds	Interpretation
2^{10}	17 minutes
2^{20}	12 days
2^{30}	32 years
2^{40}	35000 years (cave paintings)
2^{50}	35 million years ago
2^{70}	Big Bang

Theoretical analysis - Big-Oh (Today) Looking for insight

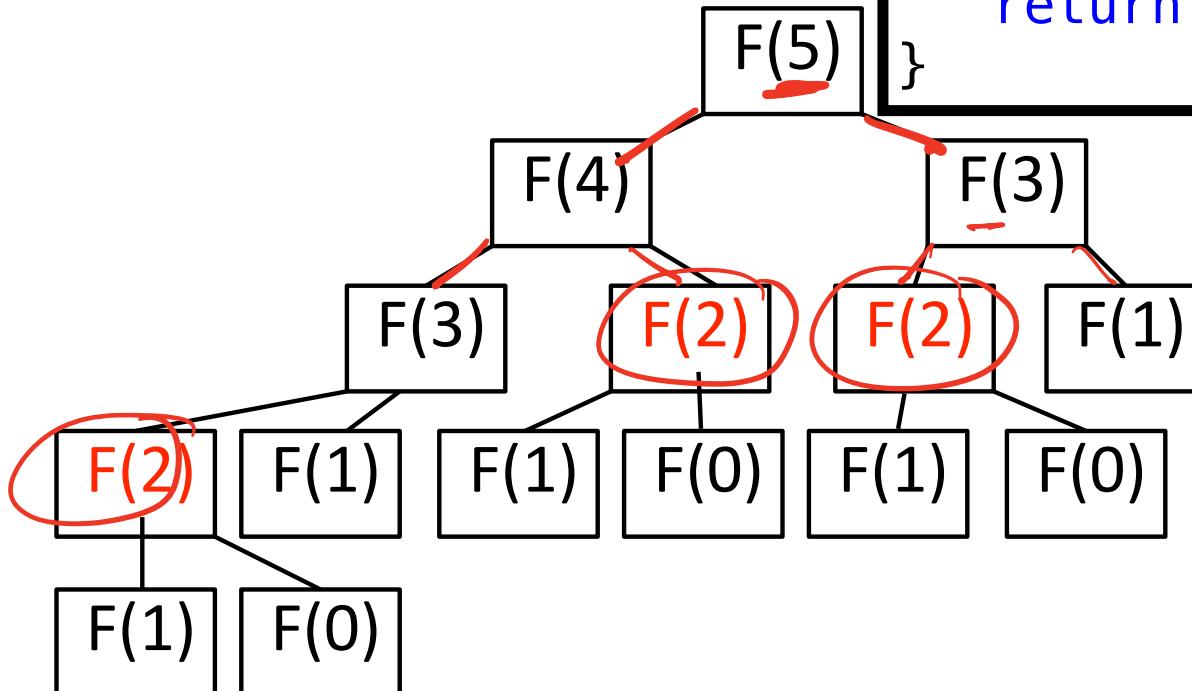
Questions of interest:

- Why is Algo A so slow?
- How do we quantify efficiency?
- Is Algo A better than Algo B?
- When will my code finish running?

Theory + real data (Lab 01) Practical question

Why So Slow?

Too many recursive calls.



```
F(int n){  
    if(n <= 1) return 1  
    return F(n-1) + F(n-2)  
}
```

Bottom Line

We want to analyze the **impact of the algorithm on running time**, separate from other hardware dependent artifacts that affect time:

- CPU speed
- Memory architecture
- Compiler optimizations
- Background processes

Too much to consider for every analysis **if we analyzed absolute time**

Bottom Line

We want to analyze the **impact of the algorithm on running time**, separate from other hardware dependent artifacts that affect time:

- CPU speed
- Memory architecture
- Compiler optimizations
- Background processes

Too much to consider for every analysis **if we analyzed absolute time**

Big idea: Count operations instead of absolute time!

Machine model used for analysis

Big Idea: Count primitive operations instead of absolute time!

- Every computer can do some **primitive operations** in constant time:
 - Data movement (assignment)
 - Data load/store (accessing an element of an array)
 - Control statements (branch, function call, return)
 - Arithmetic and logical operations
- By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm
- **Assumption:** each primitive operation takes a **constant amount of time**

Iterative Fibonacci Algorithm

Lets compute $T(n)$ = **number of primitive operations** to execute $F(n)$

```
F(int n){  
    Initialize A[0 . . . n] 1 op }  
    A[0] = A[1] = 1 4 ops  
    for (int i = 2; i <= n; i++) {  
        A[i] = A[i-1] + A[i-2] 2 ops  
    }  
    return A[n] 2 ops  
}
```

+ 75 ops
Loop runs $(n-1)$
 $(n-1)(7+3) + 1 + 1$
+ 20 ops
 $T(n) = 5 + 10(n-1) + 4$

$$T(n) = 10n - 1$$

$$= 10n - 1$$

Iterative Fibonacci Algorithm

↙ Running time

Lets compute $T(n)$ = **number of lines of code** $F(n)$ needs to execute.

```
F(int n){  
    Initialize A[0 . . . n]  
    A[0] = A[1] = 1  
  
    for i = 2 : n  
        A[i] = A[i-1] + A[i-2] ←  
  
    return A[n]    }  1 line
```

2 lines

2(n-1) lines

$T(n) = 2n+1$

Effect of constant factors

For the iterative fib, we derived two expressions for the running time

$$T(n) = 10n - 3$$
$$T(n) = 2n + 1$$

Discuss: how much do the constant factors matter as n gets large?

- Think about $10n - 3$ vs. $10n$ and $2n + 1$ vs. $2n$
- What about $10n$ vs $2n$?

$10n$ vs. 2^n

Analogy: Types of roads and orders of growth

Think of algorithms as **cars traveling a distance**.

- **Running time $T(n)$:** Effort (or fuel) needed to complete the trip
- **Input size n :** The distance the car needs to go

$10n$

vs.

$2n$

SUV on a highway

Sedan on a highway

Both cars take a similar level of effort (linear) when traveling on a highway.

Think about effort to drive on a smooth highway vs. winding mountain vs. off-road jungle trek

n^2

n^2

2^n

Orders of growth

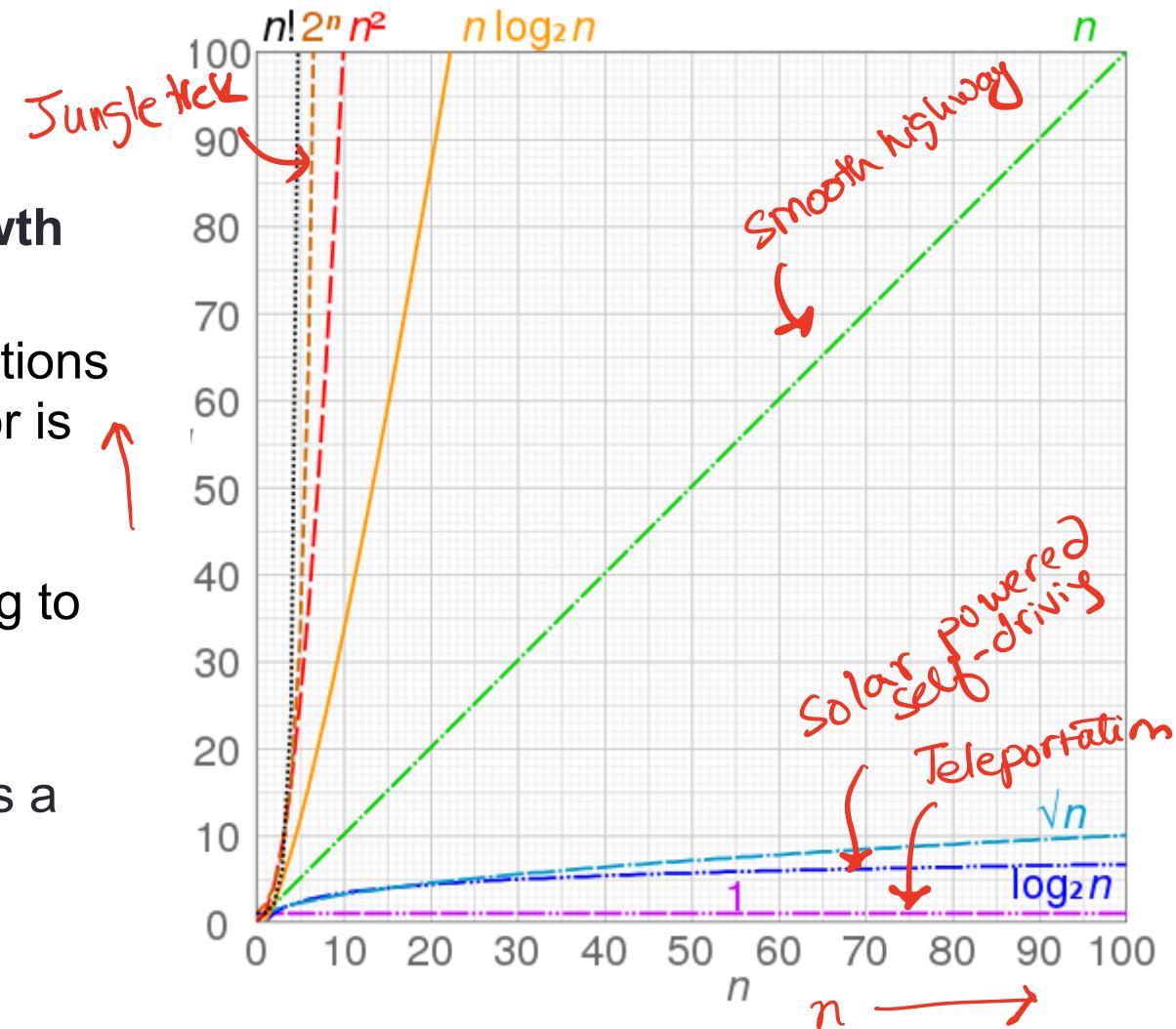
Analogy: Trips that need a similar effort have the same **order of growth**

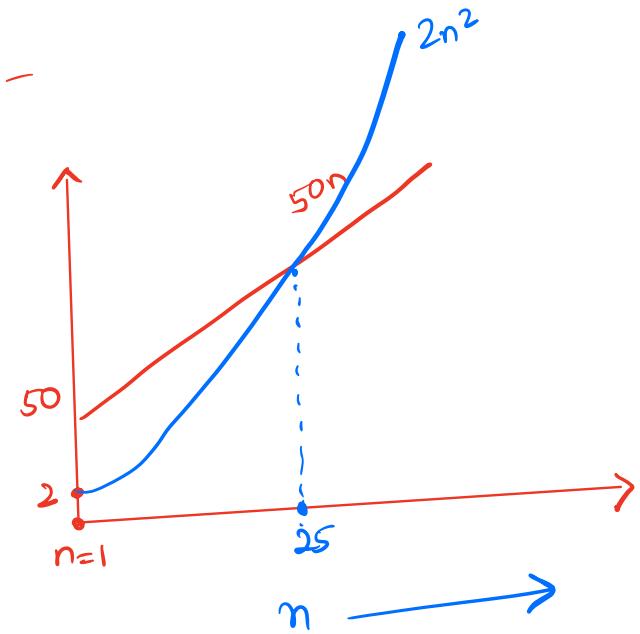
An **order of growth** is a set of functions whose (asymptotic) growth behavior is considered equivalent.

For example, $2n$, $100n$ and n belong to the same order of growth (linear)

Which of the following functions has a higher order of growth?

- A. $50n$
- B. $2n^2$





Takeaway: Quadratic function will always overtake a linear function irrespective of the constants

Orders of growth

$$2^n > n^2 > n \log n > n > \log n > 1$$

Big-O notation

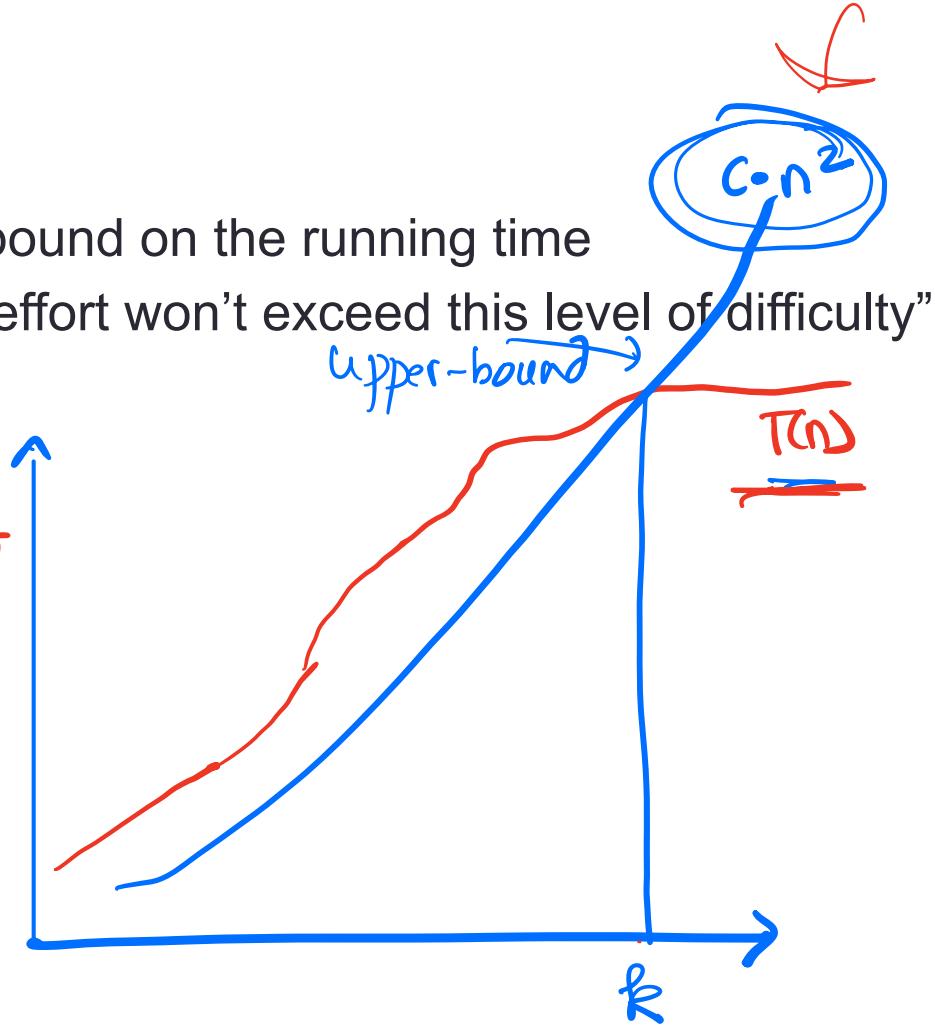
- Big-O notation provides an asymptotic upper bound on the running time
- Its like saying “No matter how bad it gets, the effort won’t exceed this level of difficulty”

$$T(n) = n^2 + \log n$$

$T(n) = O(n^2)$

we write
we mean

$$T(n) \leq c \cdot n^2, \text{ for } n \geq k$$



$T(n) = 3n^2 + n \log n$
 To Show: $T(n) = O(n^2)$, we need to
 show there exist constants $c, k > 0$
 such that $T(n) \leq c \cdot n^2$, for $n \geq k$

$$\begin{aligned}
 T(n) &= 3n^2 + n \log_2 n \\
 &\leq 3n^2 + n^2 \\
 &= 4n^2
 \end{aligned}$$

(given)
 for $n \geq 2$
 (because $n \geq \log_2 n$)
 for $n \geq 2$

Since we found that there exist positive constants
 $c = 4$ and $k = 2$, therefore. $T(n) = O(n^2)$

Definition of Big-O

$f(n)$ and $g(n)$ map positive integer inputs to positive reals.

We say $f = O(g)$ if there is a constant $c > 0$ and $k > 0$ such that $f(n) \leq c \cdot g(n)$ for all $n \geq k$.

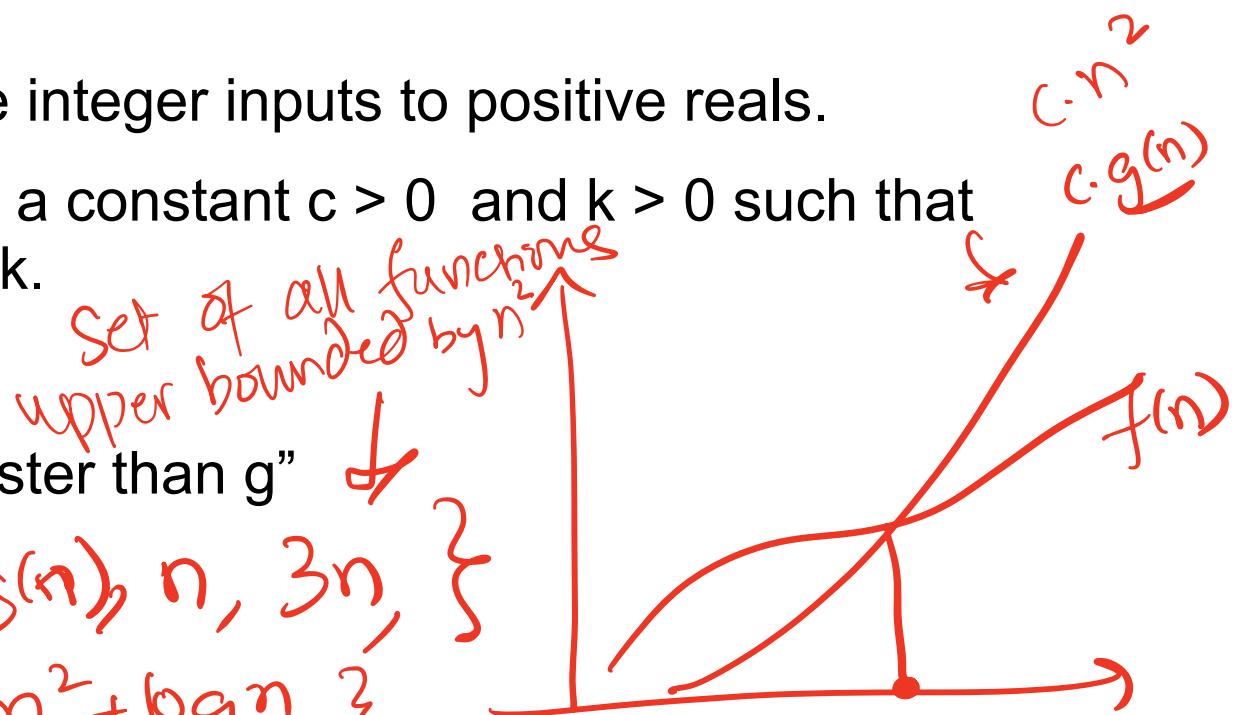
$$f = O(g)$$

means that “ f grows no faster than g ”

$$O(n^2) = \{1, \log(n), n, 3n, n^2, 3n^2 + \log n\}$$

$$T(n) = O(n^2) \text{ means } T(n) \in O(n^2)$$

$$T(n) = O(n)$$



Express in Big-O notation

1. $10000000 = O(1)$
2. $3n = O(n)$
3. $6n-2 = O(n)$
4. $15n + 44 = O(n)$
5. $50n\log(n) = O(n \log n)$
6. $n^2 = O(n^2)$
7. $n^2-6n+9 = O(n^2)$
8. $3n^2+4*\log(n)+1000 = O(n^2)$
9. $3^n + n^3 + \log(3*n) = O(3^n)$

Common sense rules

1. Multiplicative constants can be omitted:
 $14n^2$ becomes n^2 .
2. n^a dominates n^b if $a > b$: for instance, n^2 dominates n .
3. Any exponential dominates any polynomial:
 3^n dominates n^5 (it even dominates 2^n).

For polynomials, use only leading term, ignore coefficients: linear, quadratic

What is the Big O running time of sum()?

$$T(n) = 3n^4 + 5$$

```
/* n is the length of the array*/
int sum(int arr[], int n)
{
    int result = 0;
    for(int i = 0; i < n; i+=2)
        result+=arr[i];
    return result;
}
```

$$T(n) = O(1) + \frac{n}{2} O(1) + O(1)$$

$$= O(n)$$

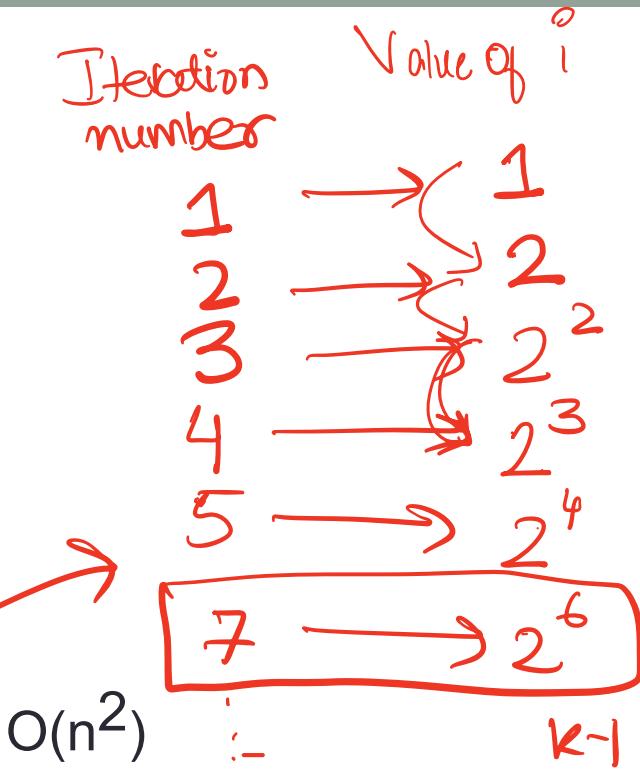
- A. $O(n^2)$
- B. $O(n)$
- C. $O(\underline{n/2})$
- D. $O(\log n)$
- E. None of the above

What is the Big O running time of sum()?

```
/* n is the length of the array*/
int sum(int arr[], int n)
{
    int result = 0;
    for(int i = 1; i < n; i*=2)
        result+=2*arr[i];
    return result;
}
```

On iteration k , value of i is 2^{k-1}

(See next page for steps on how to get to this answer)



- A. $O(n^2)$
- B. $O(n)$
- C. $O(n^3)$
- D. $O(\log n)$
- E. None of the above

Loop will end when loop variable (i) becomes greater than or equal to n .

Let's assume loop ends after the k^{th} iteration, when $i \geq n$
Plug in value of i in terms of iteration number (k)

$$2^{k-1} \geq n$$

Take \log (base 2) on both sides

$$k-1 \geq \log_2(n)$$

$$k \geq \log_2(n) + 1$$

upper bound on the number of times
the loop runs

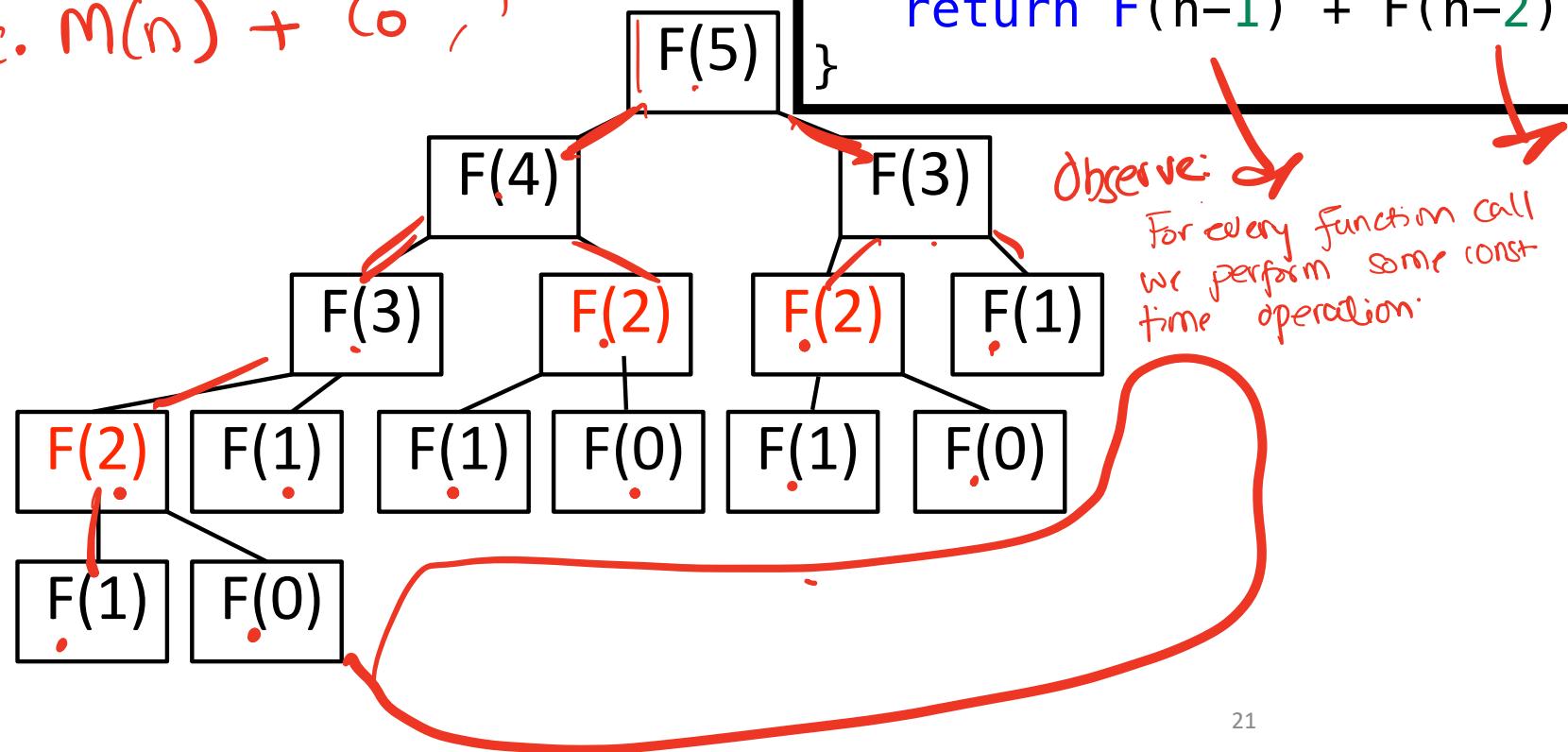
$$\begin{aligned} T(n) &\leq c_1 + c_2 \cdot (\log n + 1) + c_3 \\ &= O(1) + O(\log n) + O(1) \\ &= O(\log n) \end{aligned}$$

Why Big-O is useful in analysis of recursive fib?

Derive $T(n) = O(2^n)$

$$T(n) = c \cdot M(n) + C_0, \text{ for large } n$$

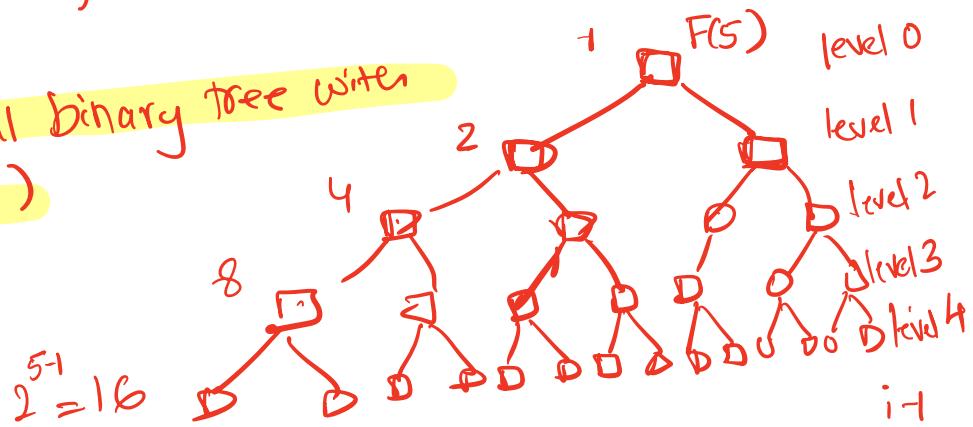
```
F(int n){  
    if(n <= 1) return 1  
    return F(n-1) + F(n-2)}
```



Running time $T(n)$ is proportional to the total number of function calls needed to calculate $F(n)$, let's denote that by $M(n)$. We will now upper bound $M(n)$ by adding more function calls to get a full binary tree

Example of a full binary tree with

4 levels ($n=5$)



Note that number of nodes at level i is 2^i

Add all the nodes on levels 0 to $n-1$

$M(n) \leq$ Number of nodes in a tree with $n-1$ levels

$$\begin{aligned}
 &= 1 + 2 + 4 + 8 + 16 + \dots + 2^{n-1} \\
 &= 2^0 + 2^1 + 2^2 + \dots + 2^{n-1}
 \end{aligned}$$

$$= 2^n - 1$$

$$\geq O(2^n)$$

(for constants c_1, c_2)

$$T(n) = c_1 \cdot M(n) + c_2$$

$$= c_1 O(2^n) + c_2$$

$$\geq O(2^n)$$

Empirical Analysis: Recursive Fibonacci Running Time

For recursive fibonacci algorithm, we derived that $T(n) = O(2^n)$

How well does this represent practice?

Observation: Time grows fast — roughly 1.6x per n.

Hypothesis: Exponential growth, like $T(n) = a * b^n$?

n	Time (ms)
40	788.09
41	1270.18
42	2070.68
43	3391.74
44	6411.54
45	9589.44
50	100329.11

Ratios between consecutive n :

- $n = 41$ to 42 : $2070.68/1270.18 \approx 1.63$
- $n = 42$ to 43 : $3391.74/2070.68 \approx 1.64$
- $n = 43$ to 44 : $6411.54/3391.74 \approx 1.89$
- $n = 44$ to 45 : $9589.44/6411.54 \approx 1.50$
- **Average:** ~ 1.66

Confirming Exponential Growth

$$T(n) = a * b^n \rightarrow \log_2(T(n)) =$$

Confirming Exponential Growth

$$T(n) = a * b^n \rightarrow \log_2(T(n)) = \log_2(a) + n \log_2(b)$$

Calculate:

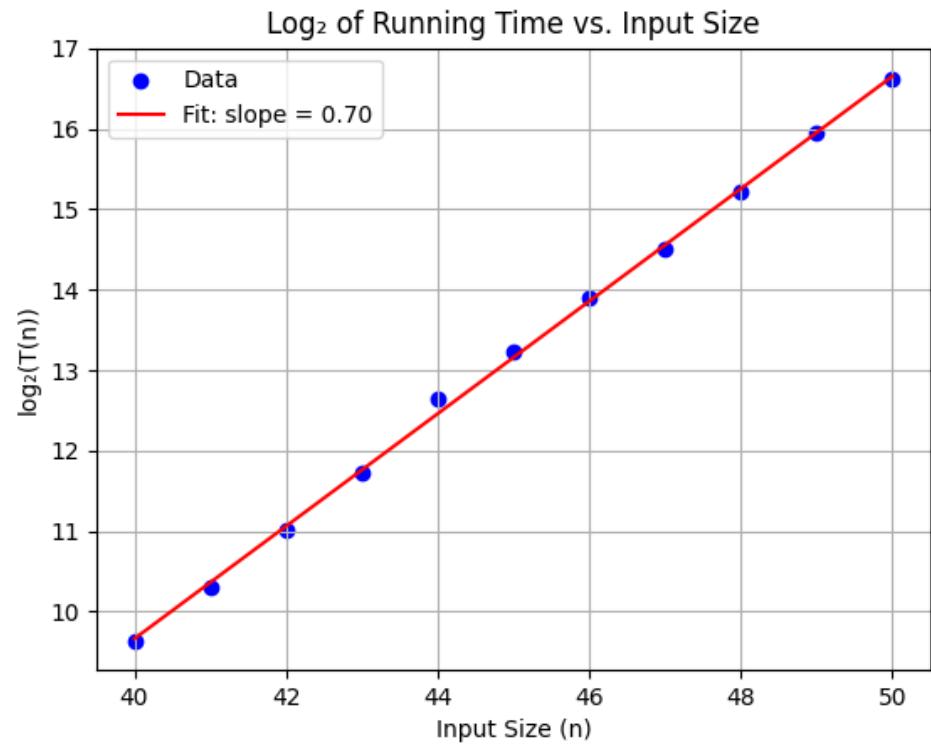
$$\log_2(788.09) \approx 9.62 \text{ (n=40)}$$

$$\log_2(100329.11) \approx 16.61 \text{ (n=50)}$$

$$\text{Slope} = (16.61 - 9.62) / (50 - 40) \approx 0.70$$

$$b \approx 2^{0.7} \approx 1.62 \approx \varphi (1.618)$$

$$a \approx 2^{-18.39}$$



Lab01: Do a similar empirical analysis for the 3-sum problem!!

Comparing predictions for T(200)

How does our prediction for T(200) compare with Prof. Dasgupta's (2^{92} s)?

- Our empirical result: $T(n) \approx 2^{(-18.39+0.7n)} \text{ ms} \approx 2^{(-28.39+0.7n)} \text{ s}$
- Our prediction for $T(200) \approx 2^{111} \text{ s}$
- Dasgupta's prediction = 2^{92} s
- Our predicted running time is larger by a factor of $2^{19} = 5 * 10^5$
- What can account for the difference in the results?

Lab01: Do a similar empirical analysis for the 3-sum problem!!

Next time

- Abstract Data Types (OOP implementation of LinkedList)

Credits and references:

Slides based on presentations by Professors Sanjoy Das Gupta and Daniel Kane at UCSD
<https://cseweb.ucsd.edu/~dasgupta/book/toc.pdf>