

Lecture 3 Handout: Running Time Analysis and Big-O practice

Last time, we derived the running time of the recursive Fibonacci: ______

●​ Is this estimate too pessimistic?
●​ How well does it represent practice?

Empirical Approach: Use data to model running time (lab01)

 n Time (ms)
40 788.09

 41 1270.18
 42 2070.68
 43 3391.74
 44 6411.54
 45 9589.44

 50 100329.11

Ratios between consecutive n
n = 40 to 41: 1270.18 / 788.09 = 1.6118
n = 41 to 42: 2070.68 / 1270.18 = 1.6302
n = 42 to 43: 3391.74 / 2070.68 = 1.6378
n = 43 to 44: 6411.54 / 3391.74 = 1.8908
n = 44 to 45: 9589.44 / 6411.54 = 1.4959

Average ratio = 1.653

Observation: Time grows fast — roughly 1.6x per n.
Hypothesis: Exponential growth, like T(n) = a * bn?

●​ How can we confirm
exponential growth?

●​ Calculate:

 log₂(788.09) ≈ 9.62 (n=40)
 log₂(100329.11) ≈ 16.61 (n=50)

 Slope = (16.61 - 9.62) / (50 - 40)
 ≈ 0.7

b ≈ 20.7
 ≈ 1.62 a ≈ 2-18.39

Why use empirical analysis? Why use Big-O?

1

BigO Practice (nested loops)
Analyze the running time of buildPattern (Big-O)

string buildPattern(int n) {

 string result = "";

 for (int i = 0; i < n; i++) result += "x";

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < i; j++) {

 result += "y";

 }

 }

 return result;

}

2

Abstract Data Types and Operator Overloading
(15 mins) Coding Demo: arranging a music playlist using std:: list

(6 mins) Activity 1: CustomList vs. std::list

In this activity, you’ll work with a simple CustomList class and compare it
to the C++ Standard Library’s std::list. Use the code below to guide your
answers.

class CustomList { //first try

public:

 Node* head;

 CustomList() : head(nullptr) {}

 void add(string val) {

 Node* newNode = new Node{val, nullptr};

 if (!head) {

 head = newNode;

 } else {

 Node* temp = head;

 while (temp->next) {

 temp = temp->next;

 }

 temp->next = newNode;

 }

 }

 // Note: No destructor provided

};

struct Node {

 string value;

 Node* next;

};

void createPlaylist() {

 // Your code here

}

(4 mins) Coding Task: Complete the createPlaylist function to:

●​ Create a CustomList playlist.
●​ Add the songs "Bad," "Beat It," and "Thriller" (in that order)
●​ Print all songs in the playlist by traversing the list (e.g., using

cout).Hint: You’ll need to loop through the nodes starting from head.

(2 mins) Discussion Task: Imagine a friend wants to use CustomList for
their music app. List two reasons why std::list might be a better choice,
considering:

●​ Ease of use (e.g., built-in features, syntax).
●​ Efficiency (e.g., performance of operations).
●​ Safety (e.g., avoiding data corruption).

3

Abstract Data Type (ADT): A data structure defined by its
operations—what it does, not how it’s built.

(5 mins) Activity 2: Spot the upgrades to CustomList
Below is an improved CustomList resembling std::list.
Analyze and enhance it in two steps:

1. Annotate (3 mins): Add brief comments to each line, explaining its
purpose or why it’s there. Compare to the old CustomList (from Activity 1)
and identify upgrades (e.g., cleaner interface, better efficiency, improved
safety).

2. Extend (2 mins): Add one new method to the public section—write its
declaration and a short note on its purpose. Jot down any questions about
the code.

class CustomList { //Second try

public:

 CustomList() : head(nullptr), tail(nullptr) {}

 CustomList(std::initializer_list<string> init);

 ~CustomList();

 void push_back(const string& val);

 void push_front(const string& val);

 void pop_back();

 void pop_front();

 void clear();

 bool empty() const;

private:

 struct Node {

 string value;

 Node* next;

 };

 Node* head;

 Node* tail;

};

4

(10 mins) Operator overloading live demo

list<string> playlist1 = {"Bad", "Beat It"};

list<string> playlist2 = {"Heal the World"};

cout << "One playlist: ";

cout << playlist1; // No chaining

cout << "Both playlists: ";

cout << playlist1 << playlist2; // Chaining!

Fill in the Blanks (Main Points)

1.​ What does cout << playlist1 do without overloading?
2.​ Write the function call for the line: cout << playlist1;
3.​ Parameter types: cout is of type __________,

playlist is of type ____________.
4.​ Write the stub of the overloaded operator<< with a void return type.
5.​ Why does cout << playlist1 << playlist2 break with void return type?

5

Try this later—write the parameterized constructor with defaults and
build operator+ for complex numbers!

class Complex {

public:

// Write the Parameterized constructor with defaults

 double getReal() const { return real; }

 double getImag() const { return imag; }

 void print() const { cout << real << " + " << imag

 << "j" << endl; }

private:

 double real;

 double imag;

};

// Add definition for operator+ here.

// Hint: << was a function, + is too!

int main() {

 Complex x(3.0, 4.0); // Example: 3 + 4j

 // Test constructor (3 ways), test operator+, try z = x + y

 return 0;

}

6

	Fill in the Blanks (Main Points)

