Lecture 3 Handout: Running Time Analysis and Big-O practice

0
Last time, we derived the running time of the recursive Fibonacci: Q (2
e Is this estimate too pessimistic?
e How well does it represent practice?

Empirical Approach: Use data to model running time (lab01)

n Time (ms) Ratios between consecutive n

40 788.09 n=40t041:1270.18/788.09 =1.6118
41 1270.18 n =41 to 42: 2070.68 / 1270.18 = 1.6302
42 2070.68 n =42 to 43: 3391.74 / 2070.68 = 1_'5378
43 3391.74 n=43to 44:6411.54 /3391.74 = 1.8908
44 6411.54 n =44 to 45: 9589.44 / 6411.54 = 1.4959
45 9589.44

Average ratio = 1.653
5;)/ 100329.11 > /Q (od+ T 3(b)
T (2 X000 ' \'“C
'0% 9 "0> 37 , - Z

Observation: Time grows fast —roughly 1.6x per n.
Hypothesis: Exponential growth, like T(n) =$E?

Logz of Running Time vs. Input Size .
b oo e How can we confirm \/
(o A slope Y exponential growth?

17

(=
(=]

e Calculate:
log-(788.09) = 9.62 (n=40)
log:(100329.11) = 16.61 (n=50)
—

=
i
L

log2(T(n))
e

«QO& T(r))

=
N
L

Slope = (16.61 - 9.62) / (50 - 40)
= 0.7
}\05‘& b) = O +F

b=2"7=162 a=271%¥

a8 a2 aa 46 a8 50 o0+
Input Size (n - % 3
n — Ty s & S.(l

Why use empirical analysis? Why use Big-O?

entr
Mo ve p"(ed«id\'m& — not gxzs&eM\yj;f?;nm
— Cimple
s Mgo @2 blest % T guleures

Rog, L) SO¥ 0%

=
=
L

=
o
|

|6- G\ =

1

Ronsit .
Q\mmm) e g B :.:'('hcga\

4,

o} {.m J’ leop
BigO Practice (nested loops) T)
Analyze the running time of buildPattern (Big-O) TCQB -~ |)(ﬂ)+ 7_,(")
string buildPattern(int n) { 2
string result = ""; O("(\) (o) = O n) + O (0)
for (int i = 0; 1 < n; i++) result += "x";
- = OO

for (int i = @; i < n; i++) { m hMES

. . c. o bo\u‘c\
- '(\\ for (int j _9_, J < i; g++) { } UPPer
\Q/L qr‘esult +="y') Cn- exe !L)

} } (ownf WVo- thCS A S S('&KW'\\' s ek
return result;
} 2
Appoeh ! Z N M) = o (v -
e ¢ inoee o
Comn wp Lo VUAADCY o ’h\w T ?(m«ht\
QQG’CO ot 22 \{Su‘“m O,‘. |
/ Q\‘((\\ . b’\
'(o) 2\ 52 Cﬁ -\B < ,n(“’\')
o ‘A z \ + - — “i
ool = O LT 2
o LM = ol
.y
ombnolNs
IR S fgom ¢ " e
Prog¢ ocdh sia O qu
b o\, - (“"\21

co
e 4 Wted O3
N;;Q > M o0k L) e o[%
: \ AN T #
n\ =
3> 2

Kea

list

Abstract Data Types and Operator Overloading
(15 mins) Coding Demo: arranging a music playlist using std::

std::1list \cst

(6 mins) Activity 1: CustomList vs.

P\

In this activity, you’ll work with a simple CustomList class and compare it

to the C++ Standard Library’s std::list. Use the code below to guide your f\

answers.

@m@f@

class CustomList { //first try
public:

P
e
Ko

‘Node* headi’;
CustomList() : head(nullptr) {}

void add(string val) {
Node* newNode = new Node{val, nullptr};

if (lhead) { @&
head = newNode;
} else {

struct Node {
string value;
Node* next;
}s
void createPlaylist() {
// Your code here

Cugtomligh ploylist 5
P\O‘U s} » a0 (€20)

Node* temp = head;
while (temp->next) {

temp = temp->next; /P(((\\U Xne \(9’
} Node & p=P

temp->next = newNode;

aylé#

}
}

// Note: No destructor provided

}s }

(4 mins) Coding Task: Complete the createPlaylist function to:

Create a CustomList playlist.

Add the songs"Bad," "Beat It," and "Thriller" (in that order)

Print-all songs in the playlist by traversing the list (e.g., using
cout).Hint: You'll need to loop through the nodes starting from head.

(2 mins) Discussion Task: Imagine a friend wants to use CustomList for
their music app. List two reasons why std::list might be a better choice,
considering:

e FEase of use (e.g., built-in features, syntax). >
e [Efficiency (e.g., performance of operations). uf)'N
e Safety (e.g., avoiding data corruption). _ memv’j (ealL (7 d‘e%*(

7 - ;

s

7

Abstract Data Type (ADT): A data structure defined by its
operations—what it d@,‘not how it’s built.

(5 mins) Activity 2: Spot the upgrades to CustomList
Below is an improved CustomList resembling std::list.
Analyze and enhance it in two steps:

1. Annotate (3 mins): Add brief comments to each line, explaining its
purpose or why it's there. Compare to the old CustomList (from Activity 1)
and identify upgrades (e.g., cleaner interface, better efficiency, improved
safety).

2. Extend (2 mins): Add one new method to the public section—write its
declaration and a short note on its purpose. Jot down any questions about
the code.

class CustomList { //Second try

public:

amb]]
CustomList() : head(nullptr), tail(nullptr) {}
CustomList(std::initializer_list<string> init) ;)

~CustomList();
void push_back(const string& val);

void push_front(const string& val);

void pop_back(); 0\“ LQ(\SHU(H\’

void pop_front();

V_void clear(); ghom“ ,@(s\v ‘mha\‘u

bool empty() const; (‘w \\LQ) % ‘\'Dl‘
private:

struct Node { W;MQ b T\\\\\W

string value;

N Node* next; ’(n DW\C(%U\V\Ld'fm

Node* head; (“n
Node* tail; dqm GY\ L

i \ AL o e “\\e‘s

(10 mins) Operator overloading live demo

4 list<string> playlistl
« list<string> playlist2
cout << "One playlist: ";
ﬁ_(nc\"?oﬂ — cout << playlistl; // No chaining
CO\“ cout << "Both playlists: ";
cout << playlistl << playlist2; // Chaining!

{"Bad", "Beat It"};
{"Heal the World"};

Fill in the Blanks (Main Points)

1. What does cout << playlistl do without overloading?
2. Write the function call for the line: cout << playlistil;
3. Parameter types: cout is of type _O_Q\ie_qm
playlist is of type _Custorn Lisk
4. Write the stub of the overloaded operator<< with a void return type.
5. Why does cout << playlist1 << playlist2 break with void return type?

| SLOPC(OJ'JV . ‘E ’
Segub & pldles

FOD (COUJC} P\O\\}\\g Y
\olﬁ\\&*)/'

opecator K (Cou’r/ v 2 —
Opct Y, -

Funchom covek Cos omlisr 29

08
yoid oPeCm’ro_"<<(OS’V‘@a“‘g‘ 2 e
Ty ke srolements Wi o 9

o ™ Os¥eam

0\(\0\‘!\‘3‘]6 '(,e;\’U\((\ \{0\\}.\9.' h) i

odcamb opernter &L - =

Try this later—write the parameterized constructor with defaults and
build operator+ for complex numbers!

class Complex {
public:

// Write the Parameterized constructor with defaults

double getReal() const { return real; }
double getImag() const { return imag; }
void print() const { cout << real << " + " << imag

<< "j" << endl; }
private:
double real;
double imag;
}s
// Add definition for operator+ here.

// Hint: << was a function, + is too!

int main() {
Complex x(3.0, 4.9); // Example: 3 + 4j

// Test constructor (3 ways), test operator+, try z = x + vy

return 0;

