
PRIORITY QUEUES REVISITED

COMPLEXITY ANALYSIS OF OF
GRAPH SEARCH

Tips for studying for the final exam
Detailed tips here: https://ucsb-cs24.github.io/s25/lectures/no-lecture-e02/

• Do Leetcode sets in reverse (lp05 → lp01)
Focus on solving efficiently (~20 min/problem), skip & revisit harder ones.

• Review lecture slides & handouts after practice
Resolve class problems yourself, then compare with annotated solutions.

• Use recorded lectures for deeper understanding
Focus on why algorithms work, key patterns, and common pitfalls.

• Revisit labs & projects for real-world context & usage of C++ STL ADTs
Recall what you built, which data structures you used, and why.

• Make a quick-reference sheet + simulate the exam
Track key concepts, then do timed practice—explain your thinking out loud.

https://ucsb-cs24.github.io/s25/lectures/no-lecture-e02/

C++ Priority Queue Airport Priority Boarding ≡
3

priority_queue<int> pq;
// New passengers arrivals
pq.push(20);
pq.push(20);
pq.push(80);
pq.push(50);
pq.push(100);

// Whose boarding next?
cout << pq.top();

// Next passenger to board
pq.pop();

True/False: PQ can only store data for an ordering is defined.

Leetcode practice (LP04)

LP04 (PQ + Hashtables): https://ucsb-cs24.github.io/s25/lp/lp04/

Priority Queues must know problems:

1. Kth Largest Element in an Array (medium):
https://leetcode.com/problems/kth-largest-element-in-an-array/
description/

2. Top K Frequent Elements (medium):
https://leetcode.com/problems/top-k-frequent-elements/description/

* Practice configuring a PQ in different ways using a comparison class

4

https://ucsb-cs24.github.io/s25/lp/lp04/
https://leetcode.com/problems/kth-largest-element-in-an-array/description/
https://leetcode.com/problems/kth-largest-element-in-an-array/description/
https://leetcode.com/problems/top-k-frequent-elements/description/

Configuring std::priority_queue

The template for priority_queue takes 3 arguments:
1. Type elements contained in the queue.
2. Container class used as the internal store for the priority_queue, the default is

vector<T>
3. Class that provides priority comparisons, the default is less

5

template <
 class T,
 class Container= vector<T>,
 class Compare = less <T>
 > class priority_queue;

Configuring std::priority_queue
6

//Template parameters for a max-heap
priority_queue<int, vector<int>, std::less<int>> pq;

//Template parameters for a min-heap
priority_queue<int, vector<int>, std::greater<int>> pq;

Trace the output of this code

7

int arr[]={10, 2, 80};
priority_queue<int*> pq;
for(int i=0; i < 3; i++)

pq.push(arr+i);

while(!pq.empty()){
cout<<*pq.top()<<endl;

 pq.pop();
}

How can we change the way pq
prioritizes pointers?

Write a comparison class to get the desired output

8

int arr[]={10, 2, 80};
priority_queue<int*, vector<int*>, cmpPtr> > pq;
for(int i=0; i < 3; i++)

pq.push(arr+i);

while(!pq.empty()){
cout<<*pq.top()<<endl;

 pq.pop();
}

class cmpPtr{
 bool operator()(int* a, int* b) const {

 return _________________;
 }
 };

Output: 80
 10
 2

BFS: Running Time Complexity
9

How many times does the
while loop run?
A. n
B. m
C. n + m
D. nm
E. None of the above

n: number of vertices
m: number of edges

Algo exploreBFS (Graph G, vertex s):

• Mark all the vertices as “not visited”
• Mark s as visited
• push s into a queue
• while the queue is not empty:

• pop the vertex u from the front of the queue
• for each of u’s neighbor (v)

• If v has not yet been visited:
• Mark v as visited
• Push v in the queue

0

2
1

BFS: Running Time Complexity
10

A. Bound the maximum number of
times the for loop runs per
iteration of the while loop

B. Compute the total number of
times the for loop runs over the
entire run of exploreBFS

C. Cannot compute Big-O
because running time depends on
two parameters (n, m)

Algo exploreBFS (Graph G, vertex s):

• Mark all the vertices as “not visited”
• Mark s as visited
• push s into a queue
• while the queue is not empty:

• pop the vertex u from the front of the queue
• for each of u’s neighbor (v):

• If v has not yet been visited:
• Mark v as visited
• Push v in the queue

For each iteration of the while loop, the for loop runs a
variable number of times. How should we proceed to
analyze the Big-O running time?

0

2
1

3

2

1

0

0
1

2

3

Total number of times each neighbor (u) is checked over the entire run of exploreBFS

Total number of times the for loop runs over the entire run of exploreBFS

BFS: Running Time Complexity

0

2
1

BFS: Time Complexity

12

What is the time complexity
of exploreBFS?
A. O(n)
B. O(m)
C. O(n + m)
D. O(nm)
E. None of the above

n: number of vertices
m: number of edges

BFS Traverse: Space Complexity

13

- Auxiliary Space complexity: Additional space usage (not including input and output)

What is the Big -O auxiliary
space complexity of
exploreBFS?
A. O(n)
B. O(m)
C. O(n + m)
D. O(n^2)
E. None of the above

n: number of vertices
m: number of edges

exploreDFS: Time Complexity

What is the time complexity of
exploreDFS?
A. O(n)
B. O(m)
C. O(n + m)
D. O(n^2)
E. None of the above

n: number of vertices
m: number of edges

exploreDFS(v, visited)

 visited[v] = true

 For each edge (v,w)

 If not w.visited

 exploreDFS(w)

exploreDFS(v, visited)

 visited[v] = true

 For each edge (v,w):

 If not w.visited

 exploreDFS(w)

exploreDFS: Space Complexity

exploreDFS(v, visited)

 visited[v] = true

 For each edge (v,w):

 If not w.visited

 exploreDFS(w)

What is the worst-case space
complexity of exploreDFS?
A. O(n)
B. O(m)
C. O(n + m)
D. O(n^2+ n.m)
E. None of the above

n: number of vertices
m: number of edges

Leetcode practice (LP05)
Max number of fish (medium)
https://leetcode.com/problems/maximum-number-of-fish-in-a-grid/description/

16

grid =
[[0,2,1,0],[4,0,0,3],[1,0,0,4],[0,3,2,0]]

Output::7

Explanation: The fisher can start at cell
(1,3) and collect 3 fish, then move to
cell (2,3) and collect 4 fish.

Return the maximum number of fish the fisher can catch if he chooses his
starting cell optimally, or 0 if no water cell exists.

Discuss how you would approach this problem?

https://leetcode.com/problems/maximum-number-of-fish-in-a-grid/description/

Leetcode practice (LP05)
LP05 (BFS/DFS/Divide& Conquer): https://ucsb-cs24.github.io/s25/lp/lp05/

Must know: 1 - 5
1. Find if path exists (easy) https://leetcode.com/problems/find-if-path-exists-in-graph/description/

2. Keys and Rooms (medium) https://leetcode.com/problems/keys-and-rooms/description/

3. Rotting Oranges (medium) https://leetcode.com/problems/rotting-oranges/description/

4. Max number of fish (medium)
https://leetcode.com/problems/maximum-number-of-fish-in-a-grid/description/

5. LCA in a binary tree (medium)
https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/

Extra challenge, can skip or leave for later
6. Minimum Operations to convert number (medium)
https://leetcode.com/problems/minimum-operations-to-convert-number/description/

17

https://ucsb-cs24.github.io/s25/lp/lp05/
https://leetcode.com/problems/find-if-path-exists-in-graph/description/
https://leetcode.com/problems/keys-and-rooms/description/
https://leetcode.com/problems/rotting-oranges/description/
https://leetcode.com/problems/maximum-number-of-fish-in-a-grid/description/
https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/
https://leetcode.com/problems/minimum-operations-to-convert-number/description/

