PRIORITY QUEUES REVISITED

COMPLEXITY ANALYSIS OF OF
GRAPH SEARCH

Tips for studying for the final exam

Detailed tips here: https://ucsb-cs24.github.io/s25/lectures/no-lecture-e02/

Do Leetcode sets in reverse (Ip05 — 1p01)
Focus on solving efficiently (~20 min/problem), skip & revisit harder ones.

 Review lecture slides & handouts after practice
Resolve class problems yourself, then compare with annotated solutions.

 Use recorded lectures for deeper understanding
Focus on why algorithms work, key patterns, and common pitfalls.

* Revisit labs & projects for real-world context & usage of C++ STL ADTs
Recall what you built, which data structures you used, and why.

 Make a quick-reference sheet + simulate the exam
Track key concepts, then do timed practice—explain your thinking out loud.

https://ucsb-cs24.github.io/s25/lectures/no-lecture-e02/

3

C++ Priority Queue = Airport Priority Boarding
enms
False: PQ can only store dajtja for which an ordering can be defined.
‘I“ o¥ne € WOYAS \coas"m o P& MU b€ Com pownabWe notder h)?(;oﬁ\-kzg Yrem:

’—BOARDINGQ i' q\..q\o.o’kv.eﬂ$ priority_queue<int> Pq;

GATE // New passengers arrivals
The Same iS Cequiced {17 pg.push(20);] O(JLOGJ*\)

pg.push(20);
pg.push(80);
pg.push(50);
pg.push(100);

// Whose boarding next?
cout << pqg.top(); oC)

// Next passenger to board
pg.pop(); OC Logn)

: Economy
(20)

Economy
(50)

Leetcode practice (LPO4)’/

LP04 (PQ + Hashtables): https://ucsb-cs24.qithub.io/s25/Ip/Ip04/

Priority Queues must know problems:

1. Kth Largest Element in an Array (medium):
= https://leetcode.com/problems/kth-largest-element-in-an-array/

description/

2. Top K Frequent Elements (medium):
** https://leetcode.com/problems/top-k-frequent-elements/description/
* Practice configuring a PQ in different ways using a comparison class

https://ucsb-cs24.github.io/s25/lp/lp04/
https://leetcode.com/problems/kth-largest-element-in-an-array/description/
https://leetcode.com/problems/kth-largest-element-in-an-array/description/
https://leetcode.com/problems/top-k-frequent-elements/description/

Configuring std::priority _queue

template <
class T,
class Container= vector<T>,
class Compare = less <T>
> class priority queue;

The template for priority _queue takes 3 arguments:

1. Type elements contained in the queue.

2. Container class used as the internal store for the priority _queue, the default is
vector<T>

3. Class that provides priority comparisons, the default is less

Configuring std::priority _queue

//Template parameters for a max-heap
priority queue<int, vector<int>, std

//Template parameters for a min-heap
priority queue<int, vector<int>, std

::less<int>> pq;

::greater<int>> pq;

Trace the output of this code

int arr[]={10, 2, 80}; How can we change the way pq
priority queue<int*> pq; prioritizes pointers?
for(int i=0; i < 3; i++)

pg.push(arr+i);

A0

while(!pg.empty()){ 2

cout<§:pq.t0p()<<endl;

Pq.pop(); | O

Write a comparison class to get the desired output

class cmpPtr{
bool operator()(int* a, int* b) const {
return A Q < +b :

}i

int arr[]={10, 2, 80};

priority queue<int*, vector<int*>, cmpPtr> > pq;

for(int i=0; i < 3; i++) —
pg.push(arr+i);

while(!pg.empty()){ Output:
cout<<*pqg.top()<<endl;

Pg.pop () ;

oo
o

\ol

BFS: Running Time Complexity

'|(\i\4a\‘i‘o‘\$ olny

&= (\,E)

/Algo exploreBFS (Graph G, vertex s):

Mark all the vertices as “not visited” O(D)
Mark s as visited ()
push s into a queue © (!) e tonp T e,
while the queue is not empty: = " mesr ™
 pop the vertex u from the front of the queue
+ for each of u’s neighbor (v) Dbcewe Fhar e £ 1007

.. <uny yovialle el
0LD:0e{If v has not yet been visited: ", g retion B
P « Mark v as visited o
* Push vin the queue oc»
Jhe ount fx neishbor itk thetes dominetes

U

s w\\;\(]00‘)

e fun Hme

of L (ode fic e nnef Loop - So v Need do count bned-line

V)

n: number of vertices
m: number of edges
-

.

How many times does the

hile loop run? ‘
'@ n Loppy anelycs

. d e
B. m ""“\oﬁ;‘?wﬁ".\
"\" WMo N\O-
C.n+m Yy Yo WO
oy velg e
D. nm g SE =

E. None of the above
To act 00

Pessi micasc !

BFS: Running Time Complexity @ 0
mgo exploreBFS (Graph G, vertex s): \ 0

For each iteration of the while loop, the for loop runs a
variable number of times. How should we proceed to

A. Bound the maximum number of
times the for loop runs per

anallygg the Big VQ-,r.l_J.n.n.mg time? iteration of the while loop
’ V\:h'le tht?] quelrjte IS nfOt err;ﬁtyf Cof th ’Compute the total number of
pop the vertex u from the front or tné queue imes the for loop runs over the

reach of u's neighbor (v): entire run of exploreBFS

C. Cannot compute Big-O
TO qek Jf"\ﬁ w"‘?""‘ because running time depends on

'Jugr need b oum Hwese Hydo two parameters (n, m)
line s oy e eptive Vui e olgp

oy
Keg a\ucshms Cj(ow oy 4—o+ad Yoyr') o perodo g oo Angguvaske 2 @ «3@ x:ﬂ \Tlff'” r\ugbef

v as visite
 Push v in the queue

BFS: Running Time Complexity

Total number of times the for loop runs over the entire run of exploreBFS

Total number of times each neighbor (u) is checked over the entire run of exploreBFS

n=y4y M° Eves ec\cr 3§ Urtoked Twoiek

nthed WGYed Ve pudn SDWUL

BFS: Time Complexity

Laikiatizelion : pe s 0Cn)

" po
Ove€all) Yhe ¥mE b do P n: number of vertices
—— \he Yme check Whet®e™ m:number of edges

av\us\\bﬂ is visired W What is the time complexity

Tre opproad >t of exploreBFS?
oty WO\'@\ o(m) A. O(n)
T v sy Beconar €99 (m)

Shause d "?“::\;1 _{37 ““ an u,\a'.wd'fa Oé:m)m)
e %‘“’W\ s Cheel vd hHCE, E. None of the above
= O(M+mM
W) = ogn +0ow) +Om 5,)

\"\gsf;\.u 7Y 98

BFS Traverse: Space Complexity

Jist d Vedkor : OCn) n: number of vertices

) O(“) m: number of edges

we € .
6, What is the Big -O auxiliary
space complexity of

axploreBFS?
O(n)

B. O(m)

C. O(n + m)

D. O(n*2)

E. None of the above

’

- Auxiliary Space complexity: Additional space usage (not including input and output)

exploreDFS: Time Complexity

—

\1

/exploreDFS (v

visited[v] = true 0

For each edge

4

If not w.visited ()

exploreDFS (w)

(v, w) :

visited)\

n: number of vertices
m: number of edges
7 B{(a(lh eadh node 16 ViGited onee, S0 Frece ate

No mote Han M Teuri Ve e (one ch;?ﬁf\
What is the time complexity of

)exploreDFS?
A. O(n)
O(m)
O(n + m)

/

AO(W\\ : Come v ¢asone

‘) h: Neecghbof
Undice e} o(oP re e

¢ be e
3 ’\o;:s%& 1s done 4200 e \)ﬂ Qév

darg, €O 2m vl = O(MY)

D. O(n"2)
E. None of the above
Dwechd ‘a‘:’?"‘a}‘é o

Neighosu ¢ i

oneL Xe(cﬁﬁe = OUV“\

exploreDFS: Space Complexity

/g;ploreDFS(v, visited;\\

visited[v] = true

For each edge (v,w):
If not w.vlisited

exploreDFS (w)

& /

Mox deph o fratsoom = Lorgest path fow sowra

n: number of vertices
m: number of edges

What is the worst-case space

@mplexity of exploreDFS? -

O(n) : Maxdepth o4 feanic

Ogm)) T e L0tk cone, -.W. ‘Dt\‘ft\"
C. O(n + m) path {som sowie W o (et

D.O(n*"2+ n.m) %%

E. None of the above PJ-)%)

16

Leetcode practice (LP05)

Max number of fish (medium)

https:Leetcode.com/problems/maximum-number-of-fish-in-a-grid/description/

\Jis q %
0 P 1 0
4 0 0 3 3
&1 0 50 4
0 3 2 0

grid =
[(9,2,1,0],[4,0,0,3],[1,0,0,4],[0,3,2,0]]

Output: 17)

Explanation: The fisher can start at cell
(1,3) and collect 3 fish, then move to
cell (2,3) and collect 4 fish.

Return the maximum number of fish the fisher can catch if he chooses his
starting cell optimally, or O if no water cell exists.

Discuss how you would approach this problem?

https://leetcode.com/problems/maximum-number-of-fish-in-a-grid/description/

17

Leetcode practice (LP05)

LPO5 (BFS/DFS/Divide& Conquer): https://ucsb-cs24.qgithub.io/s25/Ip/Ip0S/

Must know: 1 -5
. Find if path exists (easy) https://leetcode.com/problems/find-if-path-exists-in-graph/description/

2. Keys and Rooms (medium) https://leetcode.com/problems/keys-and-rooms/description/

3. Rotting Oranges (medium) https://leetcode.com/problems/rotting-oranges/description/

4. Max number of fish (medium)
https://leetcode.com/problems/maximum-number-of-fish-in-a-grid/description/

5. LCAin a binary tree (medium)
ttps://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/

Extra challenge, can skip or leave for later
6. Minimum Operations to convert number (medium) (
https://leetcode.com/problems/minimum-operations-to-convert-number/description/

https://ucsb-cs24.github.io/s25/lp/lp05/
https://leetcode.com/problems/find-if-path-exists-in-graph/description/
https://leetcode.com/problems/keys-and-rooms/description/
https://leetcode.com/problems/rotting-oranges/description/
https://leetcode.com/problems/maximum-number-of-fish-in-a-grid/description/
https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/
https://leetcode.com/problems/minimum-operations-to-convert-number/description/

