PRIORITY QUEUES REVISITED

COMPLEXITY ANALYSIS OF OF
GRAPH SEARCH



Tips for studying for the final exam

Detailed tips here: https://ucsb-cs24.github.io/s25/lectures/no-lecture-e02/

Do Leetcode sets in reverse (Ip05 — 1p01)
Focus on solving efficiently (~20 min/problem), skip & revisit harder ones.

 Review lecture slides & handouts after practice
Resolve class problems yourself, then compare with annotated solutions.

 Use recorded lectures for deeper understanding
Focus on why algorithms work, key patterns, and common pitfalls.

* Revisit labs & projects for real-world context & usage of C++ STL ADTs
Recall what you built, which data structures you used, and why.

 Make a quick-reference sheet + simulate the exam
Track key concepts, then do timed practice—explain your thinking out loud.


https://ucsb-cs24.github.io/s25/lectures/no-lecture-e02/
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C++ Priority Queue = Airport Priority Boarding
enms
False: PQ can only store dajtja for which an ordering can be defined.
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’—BOARDINGQ i' q\..q\o.o’kv.eﬂ$ priority_queue<int> Pq;

GATE // New passengers arrivals
The Same iS Cequiced {17 pg.push(20); ] O(JLOGJ*\ )

pg.push(20);
pg.push(80);
pg.push(50);
pg.push(100);

// Whose boarding next?
cout << pqg.top(); oC)

// Next passenger to board
pg.pop(); OC Logn )

: Economy
(20)

Economy
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Leetcode practice (LPO4)’/

LP04 (PQ + Hashtables): https://ucsb-cs24.qithub.io/s25/Ip/Ip04/

Priority Queues must know problems:

1. Kth Largest Element in an Array (medium):
= https://leetcode.com/problems/kth-largest-element-in-an-array/

description/

2. Top K Frequent Elements (medium):
** https://leetcode.com/problems/top-k-frequent-elements/description/
* Practice configuring a PQ in different ways using a comparison class



https://ucsb-cs24.github.io/s25/lp/lp04/
https://leetcode.com/problems/kth-largest-element-in-an-array/description/
https://leetcode.com/problems/kth-largest-element-in-an-array/description/
https://leetcode.com/problems/top-k-frequent-elements/description/

Configuring std::priority _queue

template <
class T,
class Container= vector<T>,
class Compare = less <T>
> class priority queue;

The template for priority _queue takes 3 arguments:

1. Type elements contained in the queue.

2. Container class used as the internal store for the priority _queue, the default is
vector<T>

3. Class that provides priority comparisons, the default is less



Configuring std::priority _queue

//Template parameters for a max-heap
priority queue<int, vector<int>, std

//Template parameters for a min-heap
priority queue<int, vector<int>, std

::less<int>> pq;

::greater<int>> pq;



Trace the output of this code

int arr[]={10, 2, 80}; How can we change the way pq
priority queue<int*> pq; prioritizes pointers?
for(int i=0; i < 3; i++)

pg.push(arr+i);

A0

while(!pg.empty()){ 2

cout<§:pq.t0p()<<endl;

Pq.pop(); | O



Write a comparison class to get the desired output

class cmpPtr{
bool operator()(int* a, int* b) const {
return A Q < +b :

}i

int arr[]={10, 2, 80};

priority queue<int*, vector<int*>, cmpPtr> > pq;

for(int i=0; i < 3; i++) —
pg.push(arr+i);

while(!pg.empty()){ Output:
cout<<*pqg.top()<<endl;

Pg.pop () ;
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BFS: Running Time Complexity
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BFS: Running Time Complexity @ 0
mgo exploreBFS (Graph G, vertex s): \ 0

For each iteration of the while loop, the for loop runs a
variable number of times. How should we proceed to

A. Bound the maximum number of
times the for loop runs per
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BFS: Running Time Complexity

Total number of times the for loop runs over the entire run of exploreBFS

Total number of times each neighbor (u) is checked over the entire run of exploreBFS
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BFS Traverse: Space Complexity

Jist d Vedkor : OCn) n: number of vertices

) O(“) m: number of edges

we € .
6, What is the Big -O auxiliary
space complexity of

axploreBFS?
O(n)

B. O(m)

C. O(n + m)

D. O(n*2)

E. None of the above

’

- Auxiliary Space complexity: Additional space usage (not including input and output)



exploreDFS: Time Complexity
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exploreDFS: Space Complexity

/g;ploreDFS(v, visited;\\

visited[v] = true

For each edge (v,w):
If not w.vlisited

exploreDFS (w)
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Leetcode practice (LP05)

Max number of fish (medium)

https:Leetcode.com/problems/maximum-number-of-fish-in-a-grid/description/

\Jis q %
0 P 1 0
4 0 0 3 3
&1 0 50 4
0 3 2 0

grid =
[(9,2,1,0],[4,0,0,3],[1,0,0,4],[0,3,2,0]]

Output: 17 )

Explanation: The fisher can start at cell
(1,3) and collect 3 fish, then move to
cell (2,3) and collect 4 fish.

Return the maximum number of fish the fisher can catch if he chooses his
starting cell optimally, or O if no water cell exists.

Discuss how you would approach this problem?


https://leetcode.com/problems/maximum-number-of-fish-in-a-grid/description/
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Leetcode practice (LP05)

LPO5 (BFS/DFS/Divide& Conquer): https://ucsb-cs24.qgithub.io/s25/Ip/Ip0S/

Must know: 1 -5
. Find if path exists (easy) https://leetcode.com/problems/find-if-path-exists-in-graph/description/

2. Keys and Rooms (medium) https://leetcode.com/problems/keys-and-rooms/description/

3. Rotting Oranges (medium) https://leetcode.com/problems/rotting-oranges/description/

4. Max number of fish (medium)
https://leetcode.com/problems/maximum-number-of-fish-in-a-grid/description/

5. LCAin a binary tree (medium)
ttps://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/

Extra challenge, can skip or leave for later
6. Minimum Operations to convert number (medium) (
https://leetcode.com/problems/minimum-operations-to-convert-number/description/



https://ucsb-cs24.github.io/s25/lp/lp05/
https://leetcode.com/problems/find-if-path-exists-in-graph/description/
https://leetcode.com/problems/keys-and-rooms/description/
https://leetcode.com/problems/rotting-oranges/description/
https://leetcode.com/problems/maximum-number-of-fish-in-a-grid/description/
https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/
https://leetcode.com/problems/minimum-operations-to-convert-number/description/

