

QUEUES & BREADTH-FIRST TRAVERSAL COMPLETE BINARY TREES

Problem Solving with Computers-II

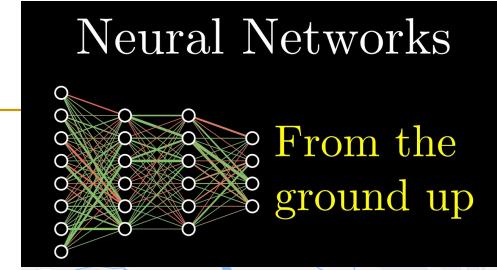
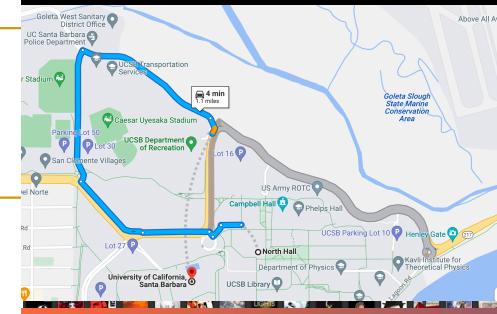
C++

```
#include <iostream>
using namespace std;
int main(){
    cout<<"Hola Facebook\n";
    return 0;
}
```

GitHub

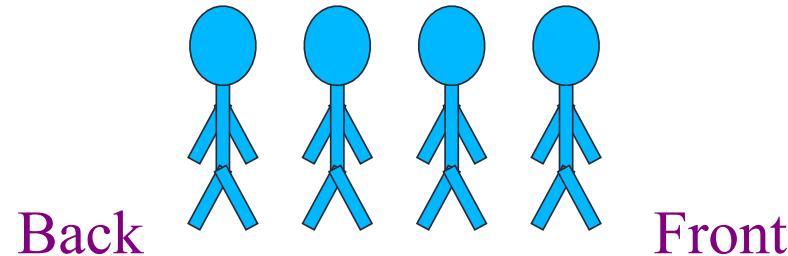
Link to handout: <https://bit.ly/CS24-Queue>

From Data Structures to Real-World Applications

Data Structure	Algorithm	Real-World Application	
Queue	Breadth-First Search (BFS)	Machine Learning (PA03: Prediction in NNs)	
Queue	Round-Robin Scheduling	Operating Systems (Task scheduling)	
Priority Queue	Dijkstra's Algorithm	GPS Navigation (Shortest path)	
Priority Queue	Huffman Coding	Data Compression (ZIP, JPEG, MP3)	
Your choice!	You design!	Querying a movie dataset (PA02)	

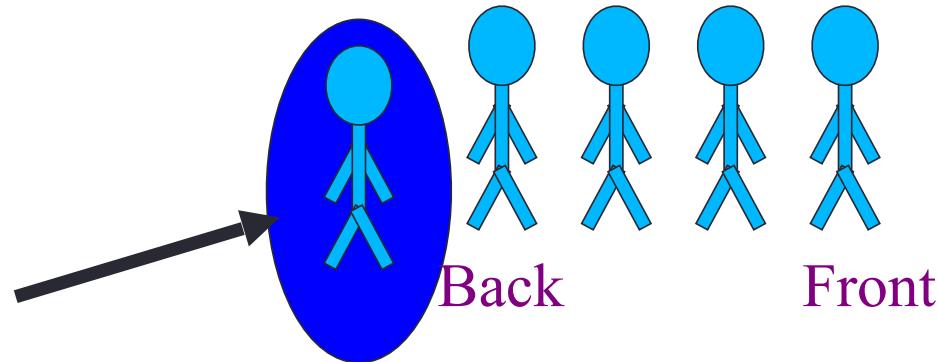
Queue: First come First Serve

- A queue is like a queue of people waiting to be serviced
- The queue has a **front** and a **back**.



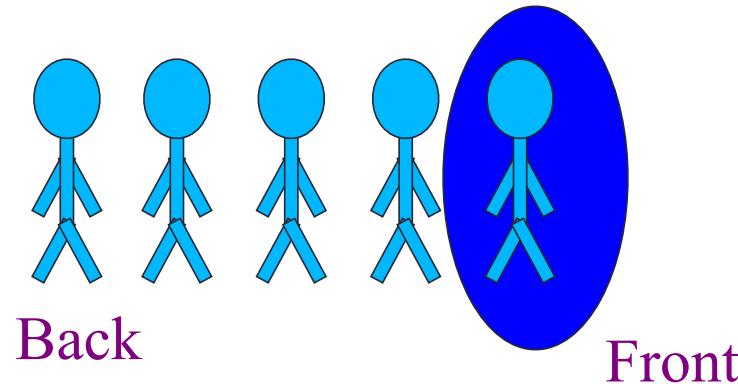
Queue Operations: push, pop, front, back

New people must enter the queue at the back. The C++ queue class calls this a push operation.



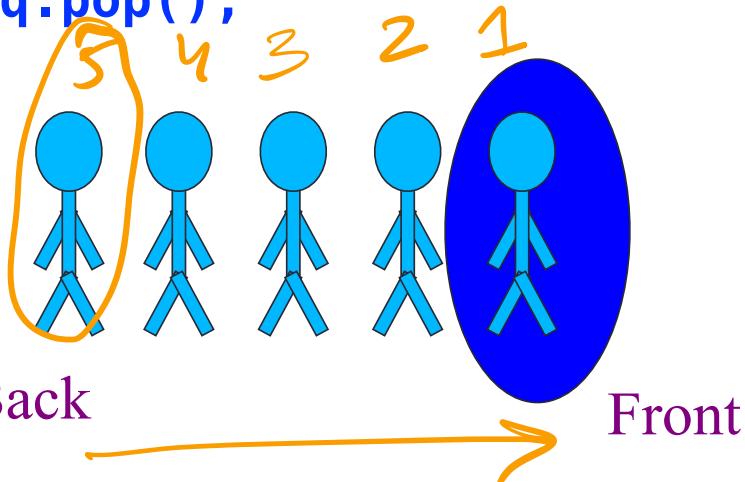
Queue Operations: push, pop, front, back

- To check the item in the front of the queue, use **front()**
- To check the item at the back of the queue, use **back()**
- When an item is taken from the queue, it always comes from the front.
- To delete an element from the front of the queue, use **pop()**

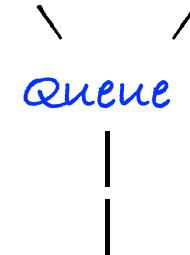


Queue Operations: empty(), push, pop, front, back: $O(1)$

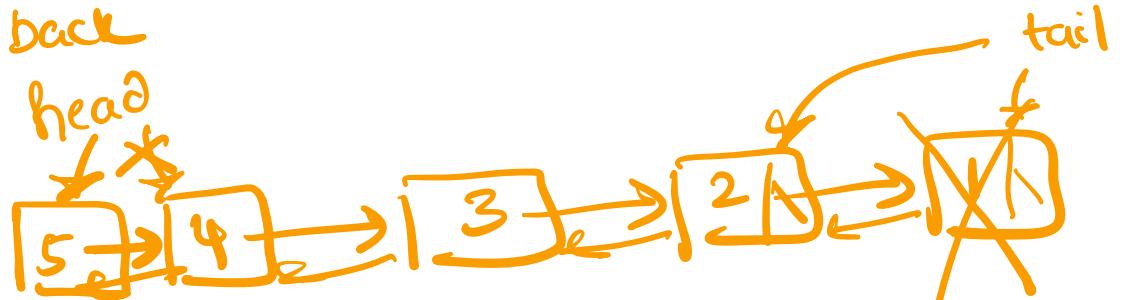
```
std::queue<int> q;
q.empty(); //true
q.push(1); // push 2, 3, 4, 5
q.front();
q.back();
q.pop();
```

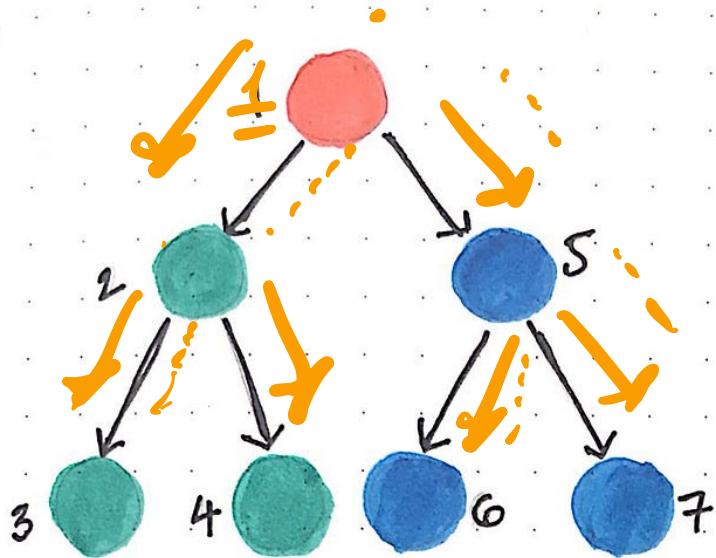


Algorithms: Breadth First Search Task Scheduling



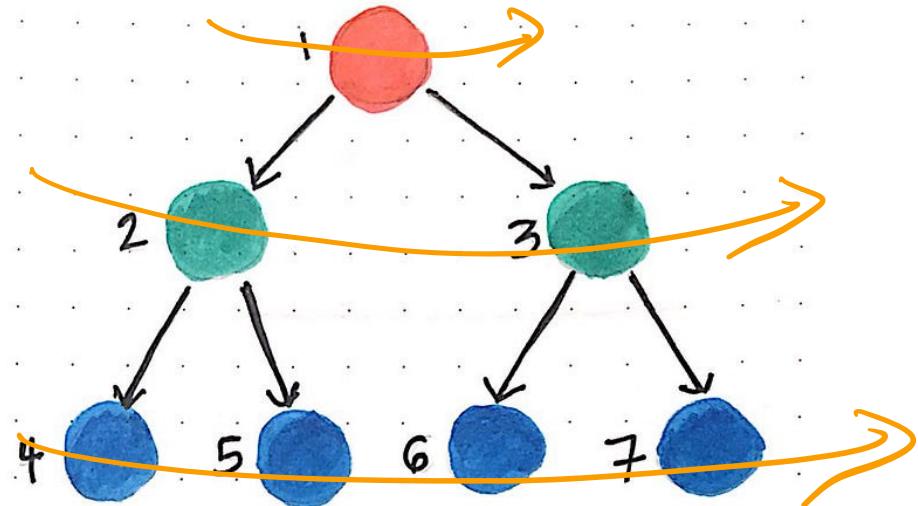
Data structure:





Depth-first search

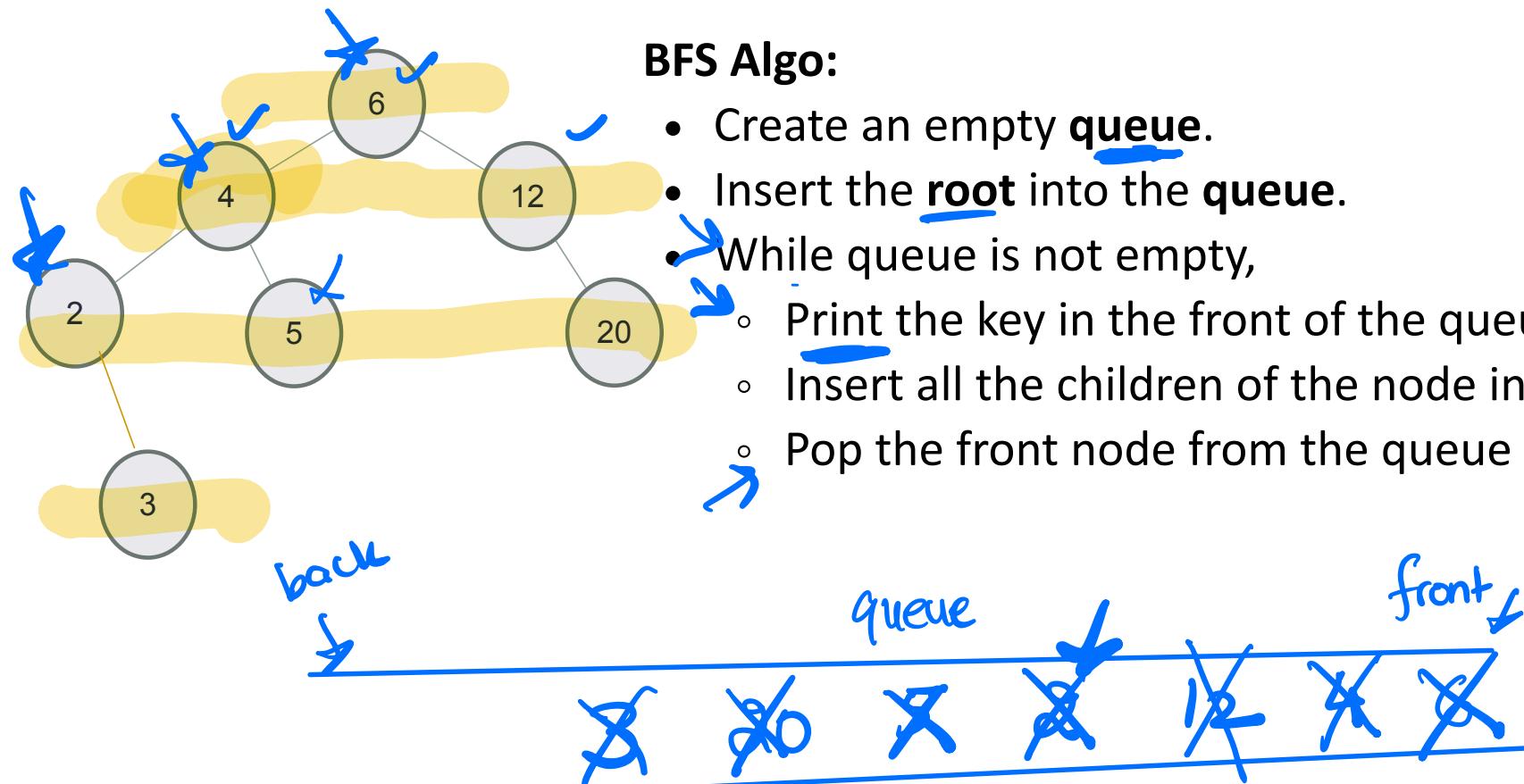
- Traverse through left subtree(s) first, then traverse through the right subtree(s).



Breadth-first search

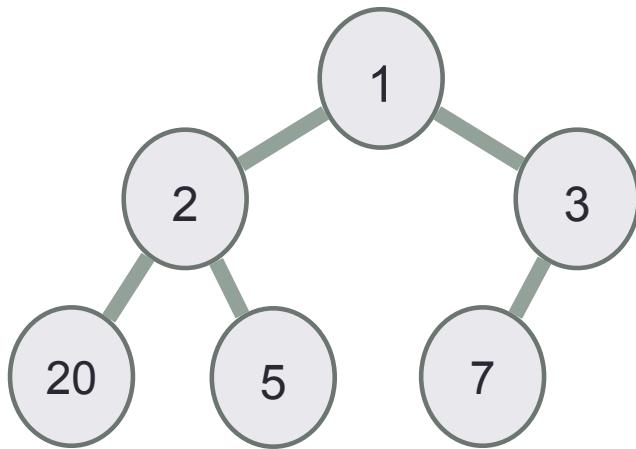
- Traverse through one level of children nodes, then traverse through the level of grandchildren nodes (and so on...).

Breadth-first traversal/search



Output: 6, 4, 12, 2, 5, 20, 3

Breadth-first traversal



BFS Algo (store output in a vector: result):

- Create an empty **queue**.
- Create an empty **vector called result**.
- Insert the **root** into the **queue**.
- While queue is not empty,
 - **Append the key in the front of the queue to result**
 - Insert all the children of the node into the queue.
 - Pop the front node from the queue

Activity 1:

1. Trace BFS for the given tree, show how the queue evolves
2. What is the resulting vector?

Connecting: vector and Google maps!

(PA03)

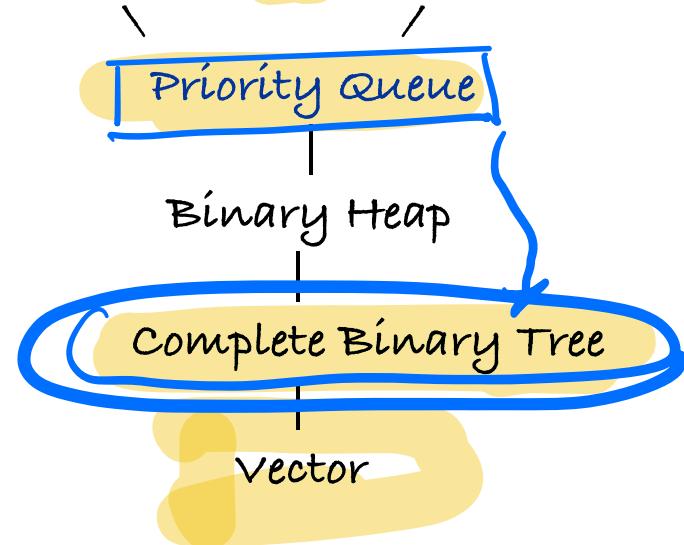
Applications: Machine Learning, Operating Systems, Image compression, Google maps

Algorithms: BFS Task Scheduling

ADT:

Datastructure: Linked list or vector

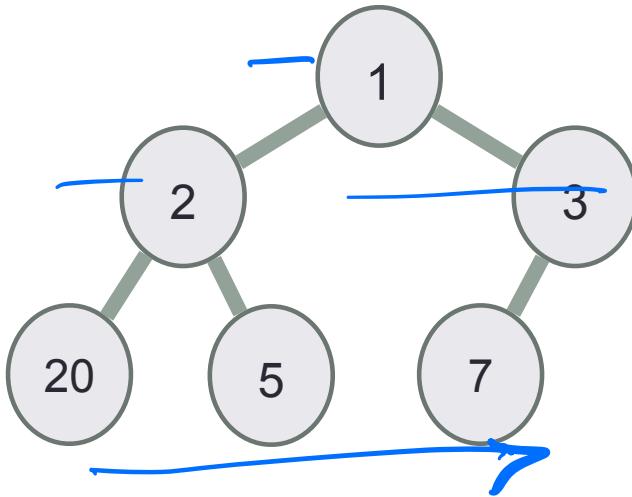
Huffman Coding Dijkstra's Shortest Path



The `priority_queue` abstract data type (ADT) is implemented as a complete binary tree.

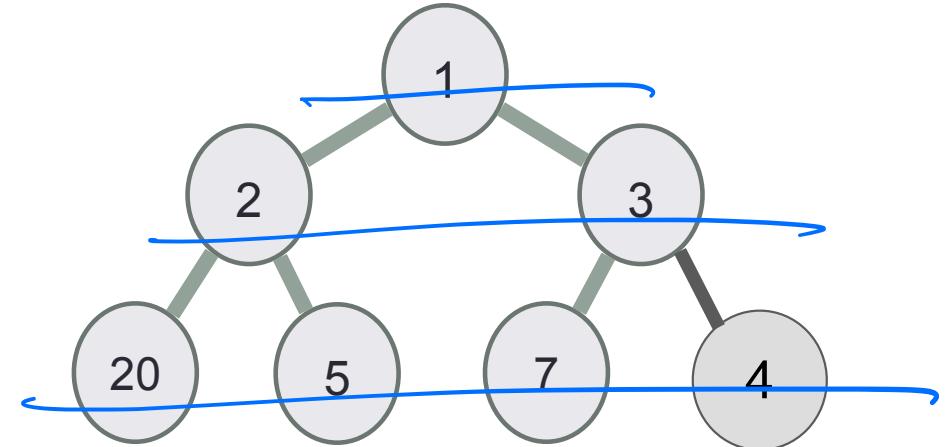
Complete binary tree is efficiently represented as a vector, by indexing keys in BFS order.

Structure behind a priority queue



Complete Binary Tree:

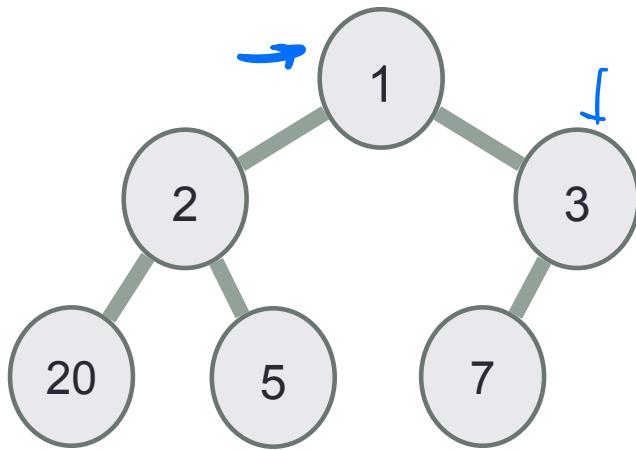
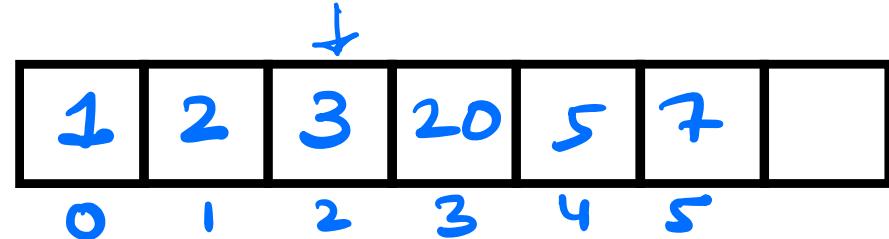
Every level is completely filled (except possibly the last level), and all nodes on the last level are as far left as possible



Full Binary Tree: A complete binary tree whose last level is completely filled

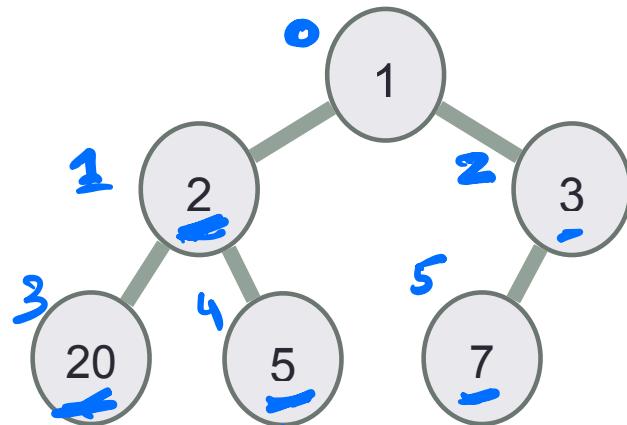
Complete/full binary trees are **balanced trees!**

Representing a complete binary tree as a vector!



- How is the index of each key related to the index of its parent?
- How is the index of each key related to the indices of its left and right child?

Representing a complete binary tree as a vector!



index
key
parent
left child
right child

1	2	3	20	5	7	
0	1	2	3	4	5	
-1	0	0	1	1	2	
1	3	5	-	-	-	
2	4	-	-	-	-	

Root is at index 0

For a key at index i , index of its

- parent is $\lfloor (i - 1)/2 \rfloor$ $\frac{5-1}{2} = 2$
- left child is $2i + 1$
- right child is $2i + 2$

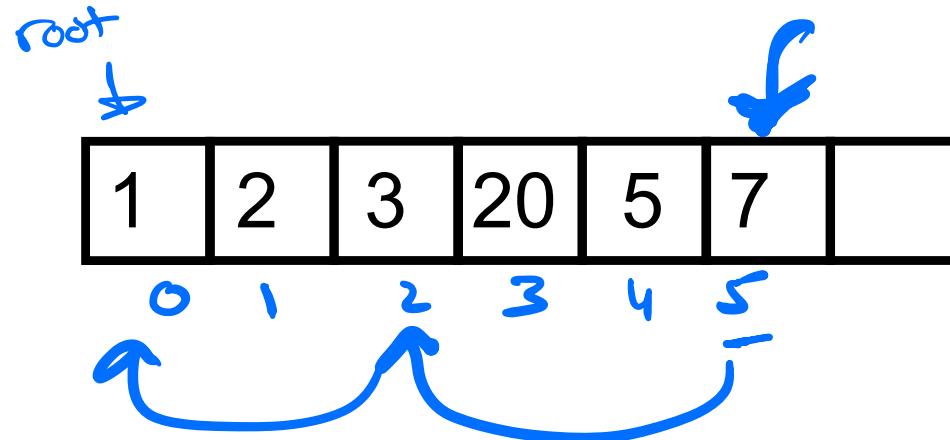
Activity 2: For a key at index i , determine the indices of its parent and children.

Traverse up the tree using the vector (only)!

Root is at index 0

For a key at index i , index of its

- parent is $\lfloor (i - 1)/2 \rfloor$
- left child is $2i + 1$
- right child is $2i + 2$



Activity 3: Starting at the last node in the last level (7), write the indices of the keys visited on the path to the root node with key (1):

A. 5, 4, 3, 2, 1, 0

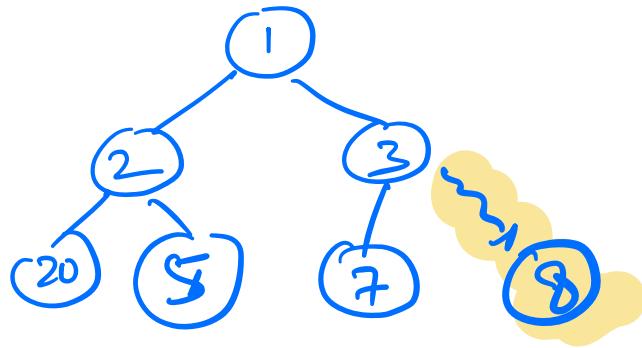
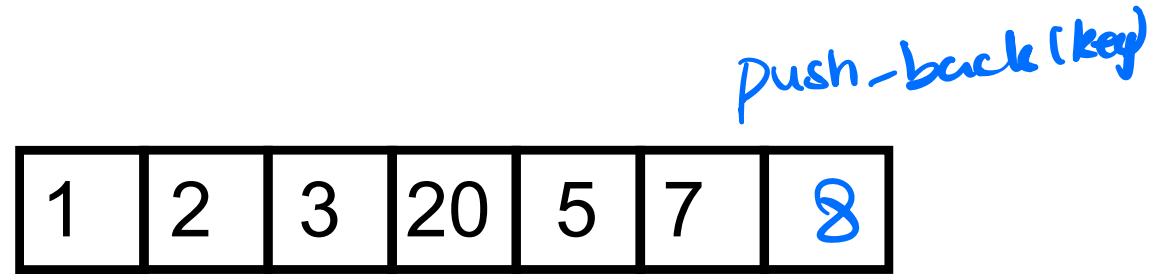
B. 5, 4, 2, 1, 0

C. 5, 3, 1

D. 5, 2, 0

E. None of the above

Add a new key with value 4 to the tree represented by this vector



What is the complexity of adding new keys to a complete binary tree?

- A. $O(1)$
- B. $O(\log n)$
- C. $O(n)$
- D. None of the above

Show that a complete binary tree is balanced

Defn $h(n)$: height of the tree has n nodes

To show: $h(n) = O(\log n)$

For a complete tree with n keys

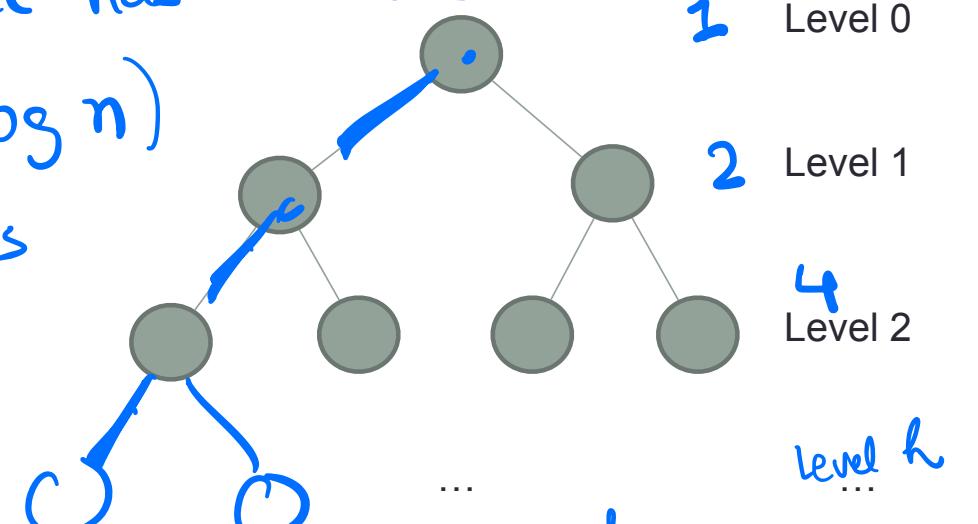
$$2^{h(n)} \leq n \leq 2^{h(n+1)} - 1$$

Taking log.

$$h(n) \leq \log n \leq \log(n+1) \leq h(n)+1$$

Since $h(n)$ is bounded by $\log n$

$$h(n) = O(\log n)$$



Level h may have upto 2^h nodes

Minimum number of nodes in levels 0 to $h-1 = 2^{h-1}$
 $= 2^h - 1$

Maximum number of nodes in levels 0 to $h = 2^{h+1} - 1$

Related Leetcode problems to attempt in problem set 3:

- Level Order Traversal of Binary Tree (medium): <<https://leetcode.com/problems/binary-tree-level-order-traversal/description/?envType=problem-list-v2&envId=binary-tree>>
- Binary Level Order Traversal II (medium): <<https://leetcode.com/problems/binary-tree-level-order-traversal-ii/description/?envType=problem-list-v2&envId=binary-tree>>