
STACKS
Problem Solving with Computers-II



• Midterm next week, May 8 (Thursday)! 
• Closed book, closed notes 
• Practice problems available in Canvas 
• All topics covered so far including this week’s lectures 
• Data structures covered: Linked lists, BST, stacks and queues 
• Labs 1 - 4 and pa01 
• Leetcode problem sets 1- 3

Announcements



https://leetcode.com/problems/daily-temperatures/ 

https://leetcode.com/problems/daily-temperatures/


Operations: push()     pop()      top()

stack<int> s

Empty stack
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The Last value In is the First value Out (LIFO) 
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The Last value In is the First value Out (LIFO) 

The call stack: 



Stack Abstract Data Type

Empty stack

Implement using vector or linked list
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Stack has only three operations: push()     pop()      top()

Why implement a stack at all?  
After all a stack is a vector or linked list with a 

reduced set of operations



Stack has only three operations: push()     pop()      top()

Why implement a stack at all?  
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A stack is useful for keeping track of history information where 
computation only depends on the most recent information !!



Stacks and Santa Barbara Weather Puzzle 

A stack manages keys using the principle of Last in First Out (LIFO) via four 
operations, each O(1):  1. push(value) 2. pop()  3. top()  4. empty() 

A stack is useful for keeping track of history information where computation only 
depends on the most recent information !! 

Objective: Analyze the complexity of a naive solution for the Daily Temperatures 
problem by determining its complexity. Next, optimize using a stack-based solution. 
Explore time and space complexity tradeoff. 

Problem: Given an array of daily temperatures, return an array answer where 
answer[i] is the number of days after day i until a warmer temperature occurs, or 0 if 
none exists. Use Santa Barbara’s forecast: 

 

Day:  0      1      2      3       4        5       6      7 
Temp: 59    59     58     59      62       61      63     65 
 
 
Part 1: Naive Solution - Turn the problem’s definition into an algorithm.  
 
Approach: Check all future days until a warmer one is found. 
 

Ans: [ ____, ____, ____,  ____,  ____,   ____,   ____,   ____ ] 

 

 

 

Leetcode (medium) daily temperatures: 
https://leetcode.com/problems/daily-temperatures/ 
 

https://leetcode.com/problems/daily-temperatures/


Unset

Fill in the blanks to complete pseudocode: 

  Initialize answer = [0] * n 
For each day i from n-1 down to 0: 
    For each day j from i+1 to n-1: 
        If temperatures[j] _____ temperatures[i]: 
            answer[i] = _________ 
            break 
return answer 

Part 2: Complexity Analysis of Naive Solution 

1. How many comparisons did you make to get the answer for day 0 for the given 
input? _______ 

2. Write an 8-day temperature input vector that incurs the worst-case running time 

[____, ____, ____, ____, ____, ____, ____, ____] 

○ Total comparisons for worst-case input:  

○ Why worst? 

3. Find the  worst-case time and space complexity expressed in Big-O 
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Part 4: Stack-Based Solution 

The refined solution takes O(n) for Day 0 (answer[0] = 4). Can we make it O(1) by 
tracking useful temperatures? 

If we parse the temperatures from right to left, every day we encounter could be a 
potential answer (for some preceding day) —  remember potential answers in a 
stack!  
 
Complete the table to compute the answer for each day, traversing the input vector right 
to left and updating the stack after each iteration. 
 
Input: temperature on each day: 

Temp 59 59 58 59 62 61 63 65 

Day 0 1 2 3 4 5 6 7 

 
Output: Num days until a warmer day: 

Num 
days 

        

Day 0 1 2 3 4 5 6 7 

 
Show the state of the stack after the temperature for each day is processed! 

Stack D0 D1 D2 D3 D4 D5 D6 D7 

Top            

 
 
 
 

 

Bottom 
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1. Complete the code to capture the stack-based solution from the previous page 
as the input vector is traversed right to left: 
 

#include <vector> 

#include <stack> 

std::vector<int> dailyTemperatures(std::vector<int>& temperatures) { 

       int n = temperatures.size(); 

       std::vector<int> answer(n, 0); 

       std::stack<int> stack;   

       for (int i = n - 1; i >= 0; --i) { 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        } 

        return answer; 

    } 
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2. What is the time and space complexity of this solution? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next steps: 

● Attempt a different solution to this problem, traversing the input vector left to right. 
● Discuss your solutions with the course staff in office hours 
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