STACKS

I
II

ganct e c308%F 29
osind - qesP2” s
int pall ol
ouuc' wola ©
Vi



L
Announcements

- Midterm next week, May 8 (Thursday)!
- Closed book, closed notes
- Practice problems available in Canvas
- All topics covered so far including this week’s lectures
- Data structures covered: Linked lists, BST, stacks and queues
-Labs 1 -4 and pa01
- Leetcode problem sets 1- 3



Results for Santa Barbara, CA -

11 PM 2 AM 5AM 8 AM 11AM 2PM 5PM 8PM
Sun Mon Tue Wed Thu Fri Sat Sun
59° 55° 59° 51° 58° 45° 59° 45° 62° 44° 61° 42° 63° 42° 65° 43°

https://leetcode.com/problems/daily-temperatures/



https://leetcode.com/problems/daily-temperatures/

stack<int> s

Empty stack I

Operations: push() pop() topl)



stack<int> s
s.push(70)

—r

Operations: push() popl() top()



stack<int> s
s.push(70)

s.push(50) : 50
s ——— 70

Operations: push()



stack<int> s
s.push(70)
s.push(50)
s.push(80)

Operations: push()




stack<int> s
s.push(70)

tOp
80
s.push(50) :
s.push(80) '
s.top() returns 80 S= 70

Operations: push() pop() top()



stack<int> s

top
s.push(70) 80
(70 :
s.push(80)

s.pop() removes value that was pushed in /ast



s.pop() removes value that was pushed in /ast



The Last value In is the First value Out (LIFO)



% StaCk
#include <jostream>

1
J using namespace std; The call stack: | main
3
4 1dint fact(int n){ fact(int)
5 if(n <= 1) return 1; ] @
6 return n * fact(n - 1);
- ; } fact(int)
9 int main() { n E;
10 cout<< fact(4) << endl;
11 return 0; fact(int)
12 } int
n o
The Last value In is the First value Out (LIFO) ™9™
int
n
1




Implement using vector or linked list

I
Empty stack

Stack Abstract Data Type



s.push(70)
Stack Abstract Data Type



(= s
=

s.push(50)
Stack Abstract Data Type




ool =20
50

s.push(80)
Stack Abstract Data Type




(= s
=

s.pop()
Stack Abstract Data Type




s.pop()
Stack Abstract Data Type



Why implement a stack at all?
After all a stack is a vector or linked list with a
reduced set of operations

Stack has only three operations: push() pop() topl)



Why implement a stack at all?
After all a stack is a vector or linked list with a
reduced set of operations

A stack is useful for keeping track of history information where
computation only depends on the most recent information !!

Stack has only three operations: push() pop() top()



Stacks and Santa Barbara Weather Puzzle

A stack manages keys using the principle of Last in First Out (LIFO) via four
operations, each O(1): 1. push(value) 2. pop() 3. top() 4. empty()

A stack is useful for keeping track of history information where computation only
depends on the most recent information !!

Objective: Analyze the complexity of a naive solution for the Daily Temperatures
problem by determining its complexity. Next, optimize using a stack-based solution.
Explore time and space complexity tradeoff.

Problem: Given an array of daily temperatures, return an array answer where
answer [1i] is the number of days after day i until a warmer temperature occurs, or 0 if
none exists. Use Santa Barbara’s forecast:

Sun Mon Tue Wed Thu Fri Sat Sun
Day: © 1 2 3 4 5 6 7
Temp: 59 59 58 59 62 61 63 65

Part 1: Naive Solution - Turn the problem’s definition into an algorithm.

Approach: Check all future days until a warmer one is found.

—_————) m————) ———— —_— —_— —_—— —_— —_—— ]

Leetcode (medium) daily temperatures:
https://leetcode.com/problems/daily-temperatures/



https://leetcode.com/problems/daily-temperatures/

Fill in the blanks to complete pseudocode:

Unset
Initialize answer = [O] * n
For each day i from n-1 down to ©:
For each day j from i+1 to n-1:
If temperatures[j] _____ temperatures[i]:

answer[i] = _________
break
return answer

Part 2: Complexity Analysis of Naive Solution

1. How many comparisons did you make to get the answer for day O for the given

2. Write an 8-day temperature input vector that incurs the worst-case running time
[————l —_—_— —_—— —_—_— —_— —_— —_— ————]
o Total comparisons for worst-case input:

o Why worst?
3. Find the worst-case time and space complexity expressed in Big-O



Part 4: Stack-Based Solution

The refined solution takes O(n) for Day 0 (answer[0] = 4). Can we make it O(1) by
tracking useful temperatures?

If we parse the temperatures from right to left, every day we encounter could be a
potential answer (for some preceding day) — remember potential answers in a
stack!

Complete the table to compute the answer for each day, traversing the input vector right
to left and updating the stack after each iteration.

Input: temperature on each day:
Temp 59 59 58 59 62 61 63 65

Day 0 1 2 3 4 5 6 7

Output: Num days until a warmer day:

Num
days

Day 0 1 2 3 4 5 6 7

Show the state of the stack after the temperature for each day is processed!
Stack DO D1 D2 D3 D4 D5 D6 D7

Top

Bottom




1. Complete the code to capture the stack-based solution from the previous page
as the input vector is traversed right to left:

#include <vector>

#include <stack>

std::vector<int> dailyTemperatures(std::vector<int>& temperatures) {
int n = temperatures.size();
std::vector<int> answer(n, 0);
std: :stack<int> stack;

for (int i =n - 1; i >=0; --i) {

}

return answer;



2. What is the time and space complexity of this solution?

Next steps:

e Attempt a different solution to this problem, traversing the input vector left to right.
e Discuss your solutions with the course staff in office hours



