
RUNNING TIME ANALYSIS OF
BINARY SEARCH TREES 

Problem Solving with Computers-II



How is PA02 going?
A. Done!
B. On track to finish
C. On track to finish but my code is a mess
D. Stuck and struggling
E. Haven’t started



Midterm – Monday 2/25
• Cumulative but the focus will be on 

• BST
• running time analysis 
• use of the C++ STL



Review Big O
• What does f(n) = O(g(n)) really mean?



Binary Search Trees
• WHAT are the operations supported?

• HOW do we implement them?

• WHAT are the (worst case) running times of each operation?

Visualize BST operations: https://visualgo.net/bn/bst
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https://visualgo.net/bn/bst


Height of the tree
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Many different BSTs are possible for the same set of keys
Examples for keys: 12, 32, 41, 42, 45

• Path – a sequence of nodes and edges connecting a node with a 
descendant.

• A path starts from a node and ends at another node or a leaf
• Height of node – The height of a node is the number of edges on the longest 

downward path between that node and a leaf.
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Worst case Big-O of search
• Given a BST of height H and N 
nodes, what is the worst case 
complexity of searching for a 
key?

A. O(1)
B. O(log N)
C. O(H)
D. O(log H)

42

32

12

45

41 50



8

Worst case Big-O of insert
• Given a BST of height H and N 
nodes, what is the worst case 
complexity of inserting a key?

A. O(1)
B. O(log N)
C. O(H)
D. O(log H)

42

32

12

45

41 50
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Worst case Big-O of min/max
• Given a BST of height H and N 
nodes, what is the worst case 
complexity of finding the 
minimum or maximum key?

A. O(1)
B. O(log N)
C. O(H)
D. O(log H)

42

32

12

45

41 50
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Worst case Big-O of predecessor/successor

• Given a BST of height H and N 
nodes, what is the worst case 
complexity of finding the 
minimum or maximum key?

A. O(1)
B. O(log N)
C. O(H)
D. O(log H)

42

32

12

45

41 50
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Worst case Big-O of delete
• Given a BST of height H and N 
nodes, what is the worst case 
complexity of deleting the key 
(assume no duplicates)?

A. O(1)
B. O(log N)
C. O(H)
D. O(log H)

42

32

12

45

41 50
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Big O of traversals

In Order:
Pre Order:
Post Order:

42

32

12

45

41 50



Worst case analysis
Are binary search trees really faster than linked lists for finding elements?
• A. Yes
• B. No

data:
next:

1 data:
next:

2 data:
next:

3
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Completely filled binary tree

42

32

12

45

41 50
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Nodes at each level have exactly two 
children, except  the nodes at the last 
level

43

Level 0

Level 1

Level 2



Relating H (height) and N (#nodes)
find is O(H), we want to find a f(N) = H

Level 0

Level 1

Level 2

……
How many nodes are on level L in a completely filled binary search tree?
A.2
B.L
C.2*L
D.2L
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Relating H (height) and N (#nodes)
find is O(H), we want to find a f(N) = H

Level 0

Level 1

Level 2

……
Finally, what is the height (exactly) of the tree in terms of N?
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Balanced trees
• Balanced trees by definition have a height of O(log N)
• A completely filled tree is one example of a balanced tree
• Other Balanced BSTs include AVL trees, red black trees and so on
• Visualize operations on an AVL tree: https://visualgo.net/bn/bst

https://visualgo.net/bn/bst


Summary of operations
Operation Sorted Array Binary Search Tree Linked List

Min
Max
Median
Successor
Predecessor
Search
Insert
Delete



CHANGING GEARS: C++STL
• The C++ Standard Template Library is a very handy set of three built-in 

components: 

• Containers: Data structures 
• Iterators: Standard way to search containers 
• Algorithms: These are what we ultimately use to solve problems

!X



C++ STL container classes

!X

array  
vector  

forward_list  
list  

stack  
queue  

priority_queue  
set 

multiset (non unique keys) 
deque  

unordered_set  
map  

unordered_map  
multimap  

bitset 


