
RUNNING TIME ANALYSIS OF
BINARY SEARCH TREES

Problem Solving with Computers-II

How is PA02 going?
A. Done!
B. On track to finish
C. On track to finish but my code is a mess
D. Stuck and struggling
E. Haven’t started

Midterm – Monday 2/25
• Cumulative but the focus will be on

• BST
• running time analysis
• use of the C++ STL

Review Big O
• What does f(n) = O(g(n)) really mean?

Binary Search Trees
• WHAT are the operations supported?

• HOW do we implement them?

• WHAT are the (worst case) running times of each operation?

Visualize BST operations: https://visualgo.net/bn/bst

5

https://visualgo.net/bn/bst

Height of the tree

6

Many different BSTs are possible for the same set of keys
Examples for keys: 12, 32, 41, 42, 45

• Path – a sequence of nodes and edges connecting a node with a
descendant.

• A path starts from a node and ends at another node or a leaf
• Height of node – The height of a node is the number of edges on the longest

downward path between that node and a leaf.

7

Worst case Big-O of search
• Given a BST of height H and N
nodes, what is the worst case
complexity of searching for a
key?

A. O(1)
B. O(log N)
C. O(H)
D. O(log H)

42

32

12

45

41 50

8

Worst case Big-O of insert
• Given a BST of height H and N
nodes, what is the worst case
complexity of inserting a key?

A. O(1)
B. O(log N)
C. O(H)
D. O(log H)

42

32

12

45

41 50

9

Worst case Big-O of min/max
• Given a BST of height H and N
nodes, what is the worst case
complexity of finding the
minimum or maximum key?

A. O(1)
B. O(log N)
C. O(H)
D. O(log H)

42

32

12

45

41 50

10

Worst case Big-O of predecessor/successor

• Given a BST of height H and N
nodes, what is the worst case
complexity of finding the
minimum or maximum key?

A. O(1)
B. O(log N)
C. O(H)
D. O(log H)

42

32

12

45

41 50

11

Worst case Big-O of delete
• Given a BST of height H and N
nodes, what is the worst case
complexity of deleting the key
(assume no duplicates)?

A. O(1)
B. O(log N)
C. O(H)
D. O(log H)

42

32

12

45

41 50

12

Big O of traversals

In Order:
Pre Order:
Post Order:

42

32

12

45

41 50

Worst case analysis
Are binary search trees really faster than linked lists for finding elements?
• A. Yes
• B. No

data:
next:

1 data:
next:

2 data:
next:

3

13

Completely filled binary tree

42

32

12

45

41 50

14

Nodes at each level have exactly two
children, except the nodes at the last
level

43

Level 0

Level 1

Level 2

Relating H (height) and N (#nodes)
find is O(H), we want to find a f(N) = H

Level 0

Level 1

Level 2

……
How many nodes are on level L in a completely filled binary search tree?
A.2
B.L
C.2*L
D.2L

15

Relating H (height) and N (#nodes)
find is O(H), we want to find a f(N) = H

Level 0

Level 1

Level 2

……
Finally, what is the height (exactly) of the tree in terms of N?

16

Balanced trees
• Balanced trees by definition have a height of O(log N)
• A completely filled tree is one example of a balanced tree
• Other Balanced BSTs include AVL trees, red black trees and so on
• Visualize operations on an AVL tree: https://visualgo.net/bn/bst

https://visualgo.net/bn/bst

Summary of operations
Operation Sorted Array Binary Search Tree Linked List

Min
Max
Median
Successor
Predecessor
Search
Insert
Delete

CHANGING GEARS: C++STL
• The C++ Standard Template Library is a very handy set of three built-in

components:

• Containers: Data structures
• Iterators: Standard way to search containers
• Algorithms: These are what we ultimately use to solve problems

!X

C++ STL container classes

!X

array
vector

forward_list
list

stack
queue

priority_queue
set

multiset (non unique keys)
deque

unordered_set
map

unordered_map
multimap

bitset

