
THE BIG FOUR
FRIEND FUNCTIONS

Problem Solving with Computers-II

Read the syllabus. Know what’s required. Know how to get help.

CLICKERS OUT

er

Freq Af

How is h01 (specifically the CS16 final) going?
!2

A. Done - I think I have done well

B. Attempted - found it a bit difficult

C. Attempted - found some concepts alien

D. Attempted - extremely difficult

E. Haven’t attempted

Clickers out – frequency AB

The Big Four
!3

1. Constructor

2. Destructor

3. Copy constructor

4. Copy Assignment

initialize member variables of an objectof
the class at the time the objectis

created

tear down
use an existing object to

initialize a

new one

use the assignment operator
on objects

of the class

Constructor and Destructor
Every class has the following special methods:

• Constructor: Called right AFTER new objects are created in
memory

• Destructor: Called right BEFORE an object is deleted from
memory

The compiler automatically generates default versions, if no
constructor is implemented.

Constructor (last class)
void foo(){
 Player p;
 Player* q = new Player;
 Player w(“Jill”);
}

How many times is the
constructor invoked for the
above code?
A. Never
B. Once
C. Twice
D. Thrice

Called

Players g new Player John

The parameterized constructor can be implemented in

any of the following ways
Player Player string player

Name

name a playerName
Score a 0

OR i Use an initialization list

Player Player striyplayer
Name nameCplayanaue

scoselo I

If any of the member variables of the
class is

a const it can only be initialized using an

initialization list

Initialization lists
* Used to initialize member variables

at the time they are created
* Must be used to initialize constant

member variables

* For example, if the member variable “name” were a const, the
constructor should use an initialization list as shown below:

Player::Player(string playerName):name(playerName), score(0) {
}

const

!7

• Must have the same name as the class preceded
by a ~ (tilda)

• No return type
• Called right BEFORE an object is deleted from

memory

Destructor
destructor

r

Destructor
The destructor of which of the objects is
called after foo() returns
A.p
B.q
C. *q
D.None of the above

void foo(){
 Player p;

Player *q = new Player;
}

O
To delete 9 usethekeyword

delete

E A C
Heap

stackeplayer
PDaire q

q 5
Player 7 CPlayer

Copy constructor
• The copy constructor creates and initializes a new object to be the copy of

another object of the class
• C++ provides a default copy constructor if one is not defined in the definition of

the class
• The copy constructor is called in all the following cases, assuming p1 is an

existing object of Player:

Player p2(p1);
Player p2 = p1;
Player *p2 = new Player(p1);

Player p c gig
parameterind
construeltor

Copy constructor
• In which of the following cases is the copy constructor called?

A. Player p1; Player p2(“Jill”);
B. Player p1(“Jill”); Player p2(p1);
C. Player *p1 = new Player(“Jill”); Player p2 = *p1;
D. B&C
E. A, B & CO

Copy assignment
• Default behavior: Copies the member variables of one object into another

Player p1(“Jill”); // Parametrized constructor
Player p2;
p2 = p1; // Copy assignment function is called

Friend functions
If a non-member function needs to access
the PRIVATE members of a class, it
should be declared as a friend function
inside the class.

Example:
bool isEqual(Player& p1, Player& p2);

Returns True if p1 and p2 have the same
name and score, otherwise false

!Classes have member variables and member functions
(method). An object is a variable where the data type is a class.

!You should know how to declare a new class type, how to
implement its member functions, how to use the class type.

!Frequently, the member functions of an class type place
information in the member variables, or use information that's
already in the member variables.

!New functionality may be added using non-member functions,
friend functions, and operator overloading

 Summary

Next time
• Operator Overloading

