REVIEW POINTERS, DYNAMIC MEMORY
LINKED LISTS
RULE OF THREE

Problem Solving with Computers-I| C++
GitHub
s’ a”“u\ T -.-‘e,‘f":'}"‘:“g. ’ J l

Have you implemented a linked-list before”?

A. Yes
B. No

Linked Lists

The Drawing Of List {1, 2, 3}

Stack Heap

head |_ o

The overall list is built by connecting the

nodes together by their next pointers. The

nodes are all allocated in the heap.

Array List

Linked List

o

A “head” pointer local to Each Jnode

EadClBal €

/)

Each node stores The next field of

BuildOneTwoThree() keeps stores one one next pointer. the last node is
the whole list by storing a data element NULL.
pointer to the first node. (int in this

example). What is the key difference between these?

Pointers

- Pointer: A variable that contains the address of another variable

- Declaration: f#ype * pointer name;

int* p; // p stores the address of an int

What 1s output of the following code?
cout<<*p;

A. Random number
B. Undefined behavior
C. Null value

How do we initialize a pointer?

Review: Pointer assignment

int *pl, *p2, X;
pl = &x;
p2 = pl;

Q: Which of the following pointer diagrams best represents the outcome of the above code?

A. B.

X
p2—»pl /- p2

C. Neither, the code is incorrect

Review: Pointers to structs

Node x = {10, 0}; struct Node {
Node *p = &x; int data;
p->data = p->data +1; Node *next;
P = p->next; }i

Q: Which of the following pointer diagrams best represents the outcome of the above code?
B.
o] <(ufo] [o
e P

C. Neither, the code is incorrect

A.

P

Create a two node list struct Node {

int data;

* Define an empty list
Pty Node *next;

- Add a node to the list with data = 10

head

terating through the list

vold printElements(LinkedList& list) {
/* Print the values in the list */

e

€

L
Clear the list

Nodex clearList(LinkedList& list) {
/* Free all the memory that was created on the heapx/

list

- s
Questions you must ask about any data structure:

 What operations does the data structure support?
A linked list supports the following operations:
1. Insert (a value)
2. Delete (a value)
3. Search (for a value)
4. Min
5. Max
6. Print all values
e How do you implement each operation?
e How fast is each operation?

L
Linked-list as an Abstract Data Type (ADT)

class LinkedList {

public:
LinkedList(); // constructor
~LinkedList(); // destructor
// other methods

private:

// definition of Node
struct Node {
int info;
Node *next;
i
Node* head; // pointer to first node
Node* tail;
}i

S A B
RULE OF THREE

If a class defines one (or more) of the following it should probably explicitly
define all three:

1. Destructor
2. Copy constructor
3. Copy assignment

The questions we ask are:

1. What is the behavior of these defaults (taking linked lists as our running
example)?

2. Is the default behavior the outcome we desire ?

3. If not, how should we overload these operators?

Behavior of default

Assume that your implementation of LinkedList uses the default
destructor, copy constructor, copy assignment

void test defaults()({
LinkedList 11;
l1l.append(1l);
ll.append(2);
l11.append(5);
ll.print();

What is the expected behavior of the above code?
A. Compiler error

B. Memory leak

C. Code is correct, output: 12 5

D. None of the above

Behavior of default copy constructor

Assume that your implementation of LinkedList uses the overloaded destructor,
default: copy constructor, copy assignment

1:1->2->5->null

void test default copy constructor(LinkedList& 11){
// Use the copy constructor to create a
// copy of 11

* What is the default behavior?
* Is the default behavior the outcome we desire ?
* How do we change it?

Behavior of default copy assignment

Assume that your implementation of LinkedList uses the overloaded
destructor, copy constructor, default copy assignment

11:1->2->5->null

void test default 1(LinkedList& 11){
LinkedList 12;

12 = 11;
}
* What is the default behavior?

Behavior of default copy assignment

Assume that your implementation of LinkedList uses the overloaded
destructor, default: copy constructor, copy assignment

1:1->2->5->null

void test default 2(LinkedList& 11){
// Use the copy assignment
LinkedList 12;
12.append(10);
12.append(20);
12 = 11;

}

* What is the default behavior?

Behavior of default copy assignment

Assume that your implementation of LinkedList uses the overloaded
destructor, copy constructor, default copy assignment

1:1->2->5->null
void test default assignment(LinkedList& 11){
// Use the copy assignment
LinkedList 12;
12.append(10);
12.append(20);
12 = 11;
11 = 11;
}
* What is the default behavior?

Next time

- GDB
- Recursion

