
 
REVIEW POINTERS, DYNAMIC MEMORY 
LINKED LISTS
RULE OF THREE

Problem Solving with Computers-II

Have you implemented a linked-list before?
A. Yes
B. No

Linked Lists
!3

Linked List

Array List 1 2 3

What is the key difference between these?

• Pointer: A variable that contains the address of another variable

• Declaration: type * pointer_name;

!4

int* p; // p stores the address of an int

How do we initialize a pointer?

Pointers

What is output of the following code?
cout<<*p;
A. Random number
B. Undefined behavior
C. Null value

Review: Pointer assignment

Q: Which of the following pointer diagrams best represents the outcome of the above code?

!5

int *p1, *p2, x;
p1 = &x;
p2 = p1;

A.

x
B.

x

C. Neither, the code is incorrect

p1 p2 p2 p1

Review: Pointers to structs

Q: Which of the following pointer diagrams best represents the outcome of the above code?

!6

Node x = {10, 0};
Node *p = &x;
p->data = p->data +1;
p = p->next;

A. B.
x

C. Neither, the code is incorrect

 0

p
p

struct Node {
 int data;
 Node *next;  
};

 11 0 11 0

Create a two node list
!7

• Define an empty list
• Add a node to the list with data = 10

struct Node {
 int data;
 Node *next;  
};

Iterating through the list

void printElements(LinkedList& list) {
 /* Print the values in the list */

}

head

Clear the list

Node* clearList(LinkedList& list) {
 /* Free all the memory that was created on the heap*/

}

list

Questions you must ask about any data structure:
!10

• What operations does the data structure support?
 A linked list supports the following operations:

1. Insert (a value)
2. Delete (a value)
3. Search (for a value)
4. Min
5. Max
6. Print all values

• How do you implement each operation?
• How fast is each operation?

Linked-list as an Abstract Data Type (ADT)
class LinkedList {
public:
 LinkedList(); // constructor
 ~LinkedList(); // destructor
 // other methods
private:
 // definition of Node
 struct Node {
 int info;
 Node *next;
 };
 Node* head; // pointer to first node
 Node* tail;
};

RULE OF THREE
If a class defines one (or more) of the following it should probably explicitly
define all three:
1. Destructor
2. Copy constructor
3. Copy assignment

The questions we ask are:
1. What is the behavior of these defaults (taking linked lists as our running
example)?
2. Is the default behavior the outcome we desire ?
3. If not, how should we overload these operators?

Behavior of default
Assume that your implementation of LinkedList uses the default
destructor, copy constructor, copy assignment

void test_defaults(){
LinkedList l1;
l1.append(1);
l1.append(2);
l1.append(5);
l1.print();

}

What is the expected behavior of the above code?
A. Compiler error
B. Memory leak
C. Code is correct, output: 1 2 5
D. None of the above

Behavior of default copy constructor
Assume that your implementation of LinkedList uses the overloaded destructor,
default: copy constructor, copy assignment
l1 : 1 -> 2- > 5 -> null
void test_default_copy_constructor(LinkedList& l1){

// Use the copy constructor to create a
// copy of l1

}
* What is the default behavior?
* Is the default behavior the outcome we desire ?
* How do we change it?

Behavior of default copy assignment
Assume that your implementation of LinkedList uses the overloaded
destructor, copy constructor, default copy assignment
l1 : 1 -> 2- > 5 -> null

void test_default_1(LinkedList& l1){
LinkedList l2;
l2 = l1;

}
* What is the default behavior?

Behavior of default copy assignment
Assume that your implementation of LinkedList uses the overloaded
destructor, default: copy constructor, copy assignment
l1 : 1 -> 2- > 5 -> null
void test_default_2(LinkedList& l1){

// Use the copy assignment
LinkedList l2;
l2.append(10);
l2.append(20);
l2 = l1;

}
* What is the default behavior?

Behavior of default copy assignment
Assume that your implementation of LinkedList uses the overloaded
destructor, copy constructor, default copy assignment
l1 : 1 -> 2- > 5 -> null
void test_default_assignment(LinkedList& l1){

// Use the copy assignment
LinkedList l2;
l2.append(10);
l2.append(20);
l2 = l1;
11 = l1;

}
* What is the default behavior?

Next time
• GDB
• Recursion

