REVIEW POINTERS, DYNAMIC MEMORY
LINKED LISTS

RULE OF THREE
Problem Solving with Computers-II C++
GitHub

((@c\\m(\(:j P\ C'

Have you implemented a linked-list before?

A. Yes
B. No

Linked Lists

The Drawing Of List {1, 2, 3}

Stack

L .\\LQQ NG

l\ ' Array List
J L Ccmhavou.s e’y

H

nodes are all allocated in the heap. Linked List

head The overall list is built by connecting the
nodes together by their next pointers. The

A “head” pointer local to
BuildOneTwoThree() keeps
the whole list by storing a
pointer to the first node.

?*C} C 1D

Each node Each node stores The next field of
stores one one next pointer. the last node is
data element NULL.

(int in this

example). What is the key difference between these?

Pointers

- Pointer: A variable that contains the address of another variable
- Declaration: fype * pointer name;

int* p; // p stores the address of an int

What is output of the following code? ¢
cout<<*p; CD(%OLC“.CA‘ oM 'IAMM"\\&-L/“U-") Fol‘ﬁ—w ()
A~.Random number | g
ndefined behavior L’kdt) AMALLE h 4 J—Cﬁ -ﬁw
. Null value

How do we initialize a pointer?

Review: Pointer assignment
int *pl, *p2, X;

pl = &x;

p2 = pl;

Q: Which of the following pointer diagrams best represents the outcome of the above code?

A . x
p2/ pl

C. Neither, the code is incorrect

p2 —»pl

Review: Pointers to structs

Node x = {10, 0}; struct Node {
Node *p = &X; int data;
p->data = p->data +1; Node *next;
p = p->next; }i

Q: Which of the following pointer diagrams best represents the outcome of the above code?

) 110®"110 0
o) O+ fufo

b
p

C. Neither, the code is incorrect

Create a two node list struct Node {

int data;

* Define an empty list
Pt Node *next;

- Add a node to the list with data = 10

i

Linkod Uik L5t 2 500017 shucr Linid Wt

— * Npda + lheeds
Ast \ o J s] Nodet tatl

head fox | /

L3t ’:ad . mew Nodt 310,0';'/ Heop

ﬂ&:‘ fat(- ;(;G'Lt&&) ﬂ
st [7 > (o] o\

head &

-

void printElements(LinkedListé& list) {
/* Print the values in the list */

Nods wp =z Lokked,
while CP) S

Low"(< P—? Aot “,
Par—%ru.x.t'}

lterating through the list

Clear the list

Nodex clearList(LinkedList& list) {
/* Free all the memory that was created on the heap*/

Mods 4P = bish- head”,
b s Le Cf>§
Nodss np = P
delere P

g ']) 2 ’W—P lLS,_t,a M:'

<}>

O
Questions you must ask about any data structure:

 What operations does the data structure support?
A linked list supports the following operations:

1.Insert (a value) bo H~ J‘W o af Hu s
2. Delete (a value)
3. Search (for a value)
4. Min
5. Max
6. Print all values

* How do you implement each operation?

 How fast is each operation?

2%1»04

s L A A i
Linked-list as an Abstract Data Type (ADT)

class LinkedList {

public:
LinkedList(); // constructor
~LinkedList(); // destructor
// other methods

private:

// definition of Node
struct Node {
int info;
Node *next;
}i
Node* head; // pointer to first node
Node* tail;

1111 e
RULE OF THREE

If a class defines one (or more) of the following it should probably explicitly
define all three:

1. Destructor
2. Copy constructor
3. Copy assignment

The questions we ask are:

1. What is the behavior of these defaults (taking linked lists as our running
example)?

2. Is the default behavior the outcome we desire ?

3. If not, how should we overload these operators?

Behavior of default

Assume that your implementation of LinkedList uses the default
destructor, copy constructor, copy assignment

void test defaults(){
LinkedList 11;
1l.append(1l);
1l.append(2);
1l.append(5);
1l.print();

What is the expected behavior of the above code?
A. Compiler error

B. Memory leak

C. Code is correct, output: 12 5

D. None of the above

Behavior of default copy constructor

Assume that your implementation of LinkedList uses the overloaded destructor,
default: copy constructor, copy assignment

1:1->2->5->null

void test default copy constructor(LinkedList& 11){
// Use the copy constructor to create a
// copy of 11

* What is the default behavior?
Is the default behavior the outcome we desire ?
* How do we change it?

*

Behavior of default copy assignment

Assume that your implementation of LinkedList uses the overloaded
destructor, copy constructor, default copy assignment

1:1->2->5->null

void test default 1(LinkedListé& 11)({
LinkedList 12;
12 = 11;

}

* What is the default behavior?

Behavior of default copy assignment

Assume that your implementation of LinkedList uses the overloaded
destructor, default: copy constructor, copy assignment

1:1->2->5->null

void test default 2(LinkedList& 11){
// Use the copy assignment
LinkedList 12;
12.append(10);
12.append(20);
12 = 11;

}

* What is the default behavior?

Behavior of default copy assignment

Assume that your implementation of LinkedList uses the overloaded
destructor, copy constructor, default copy assignment

1:1->2->5->null
void test default assignment(LinkedList& 11){
// Use the copy assignment
LinkedList 12;
12.append(10);
12.append(20);
12 = 11;
11 = 11;
}
* What is the default behavior?

Next time

- GDB
- Recursion

