
INTRO TO PA02 
RULE OF THREE
RECURSION
GDB

Problem Solving with Computers-II

Announcements
• PA01 due tomorrow (1/29)- you may submit until this date for a 5% deduction.
• Lab02 due Thursday (1/31)
• Midterm next week (Monday)(02/04) - All topics covered so far.
• PA02: checkpoint due next week (02/06), final deadline (02/15)

Review PA02: Card matching game involving linked lists
!3

Expected files: Makefile, main.cpp, cards.cpp, cards.h, testcards.cpp

Review PA02: Checkpoint: Design and test!
!4

Expected files: Makefile, main.cpp, cards.cpp, cards.h, gameplan.cpp, testcards.cpp

RULE OF THREE
If a class defines one (or more) of the following it should probably explicitly
define all three:
1. Destructor
2. Copy constructor
3. Copy assignment

The questions we ask are:
1. What is the behavior of these defaults (taking linked lists as our running
example)?
2. Is the default behavior the outcome we desire ?
3. If not, how should we overload these operators?

Behavior of default
Assume that your implementation of LinkedList uses the default
destructor, copy constructor, copy assignment

void test_defaults(){
LinkedList l1;
l1.append(1);
l1.append(2);
l1.append(5);
l1.print();

}

What is the expected behavior of the above code?
A. Compiler error
B. Memory leak
C. Code is correct, output: 1 2 5
D. None of the above

Behavior of default copy constructor
Assume that your implementation of LinkedList uses the overloaded destructor,
default: copy constructor, copy assignment
l1 : 1 -> 2- > 5 -> null
void test_default_copy_constructor(LinkedList& l1){

// Use the copy constructor to create a
// copy of l1

}
* What is the default behavior?
* Is the default behavior the outcome we desire ?
* How do we change it?

Behavior of default copy assignment
Assume that your implementation of LinkedList uses the overloaded
destructor, copy constructor, default copy assignment
l1 : 1 -> 2- > 5 -> null

void test_default_1(LinkedList& l1){
LinkedList l2;
l2 = l1;

}
* What is the default behavior?

Behavior of default copy assignment
Assume that your implementation of LinkedList uses the overloaded
destructor, default: copy constructor, copy assignment
l1 : 1 -> 2- > 5 -> null
void test_default_2(LinkedList& l1){

// Use the copy assignment
LinkedList l2;
l2.append(10);
l2.append(20);
l2 = l1;

}
* What is the default behavior?

Behavior of default copy assignment
Assume that your implementation of LinkedList uses the overloaded
destructor, copy constructor, default copy assignment
l1 : 1 -> 2- > 5 -> null
void test_default_assignment(LinkedList& l1){

// Use the copy assignment
LinkedList l2;
l2.append(10);
l2.append(20);
l2 = l1;
11 = l1;

}
* What is the default behavior?

4050 2010

head

int IntList::search(int value){

 //Search for a value in a linked list
 //using recursion
}

Review recursion

Helper functions
• Sometimes your functions takes an input that is not easy to recurse on
• In that case define a new function with appropriate parameters: This is

your helper function
• Call the helper function to perform the recursion
• Usually the helper function is private
For example

bool IntList::search(int value){

return searchHelper(head, value);
 //helper function that performs the recursion.

}

4050 2010

head

int IntList::searchHelper(int value){

 if(!head) return false;
 if (head->value == value)
 return true;

search(head->next, value);
}

What is the output of
cout<<list.searchHelper(50);

A.Segmentation fault

B.Program runs forever

C.Prints true or 1 to screen

D.Prints nothing to screen

E.None of the above

Review recursion

Concept Question

head tail
(A)

(B): only the first node
(C): A and B
(D): All the nodes of the linked list
(E): A and D

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the destructor of Linked-list is called?

 class Node {
 public:
 int info;
 Node *next;
 };

Concept question

head tail
(A)

(B): All the nodes in the linked-list
(C): A and B
(D): Program crashes with a segmentation fault
(E): None of the above

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the destructor of Linked-list is called?

 Node::~Node(){
 delete next;

 }

LinkedList::~LinkedList(){
delete head;

}

 Node::~Node(){
 delete next;

 }

head tail

GDB: GNU Debugger
 - To use gdb, compile with the -g flag
 - Setting breakpoints (b)
 - Running programs that take arguments within gdb (r arguments)
 - Continue execution until breakpoint is reached (c)
 - Stepping into functions with step (s)
 - Stepping over functions with next (n)
 - Re-running a program (r)
 - Examining local variables (info locals)
 - Printing the value of variables with print (p)
 - Quitting gdb (q)
 - Debugging segfaults with backtrace (bt)
* Refer to the gdb cheat sheet: http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Next time
• Complexity and running time analysis

