# **BINARY SEARCH TREES**

Problem Solving with Computers-II



# **Binary Search Trees**

• What are the operations supported?

What are the running times of these operations?

· How do you implement the BST i.e. operations supported by it?

23 5

(omplexity

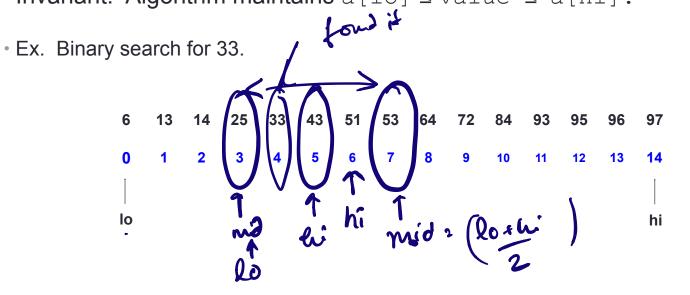
Operations supported by sorted arrays and Search! Binary Search Trees min max delete insert count maller value predecessor -> next anger volue successor > next print in order

Operations supported by Sorted arrays and Binary Search Trees (BST)

| Operations                       | Sorted Array | BST                   |
|----------------------------------|--------------|-----------------------|
| Min                              |              | <ul> <li>✓</li> </ul> |
| Max                              | ✓            | <b>V</b>              |
| Successor (next larger value)    |              | V                     |
| Predecessor (mot gnaller value ) |              |                       |
| Search                           |              |                       |
| Insert                           |              | V                     |
| Delete                           |              |                       |
| Print elements in order          | ✓            |                       |

# **Binary Search**

- Binary search. Given value and sorted array a[], find index i such that a[i] = value, or report that no such index exists.
- Invariant. Algorithm maintains a [lo] ≤ value ≤ a [hi].



A tree has following general properties:

75 au the children of 2

- One node is distinguished as a **root**;
- Every node (exclude a root) is connected by a directed edge *from* exactly one other node;

A direction is: *parent -> children* 

• Leaf node: Node that has no children

node w

key value

Trees

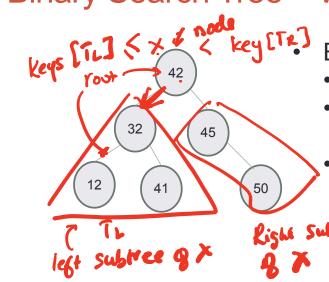
607

6

with no children :

# Which of the following is/are a tree? Valid Tree with one node Β. C. A & B no dorps in a free E. All of A-C

# Binary Search Tree – What is it?



- Each node:
- stores a key (k)
  - has a pointer to left child, right child and parent (optional)
    - Satisfies the Search Tree Property

#### For any node,

Keys in node's left subtree <= Node's key Node's key < Keys in node's right subtree

```
struct Node & struct BST Node & neet;

Node & neet;

Struct BST Noder left;

BST Node & Cost;

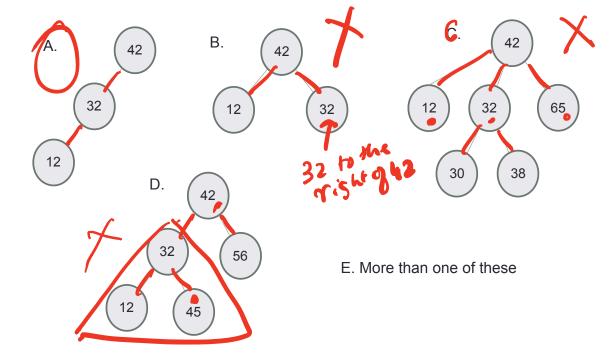
ST Node & Farent;

ST Node & Fort;

Member Janiable &

Class BST
```

## Which of the following is/are a binary search tree?



# BSTs allow efficient search!

45

41==41

42

41

41 < 42? Yes Start at the root;

- Trace down a path by comparing **k** with the key of the current node x:
  - If the keys are equal: we have found the key
  - If  $\mathbf{k} < \text{key}[x]$  search in the left subtree of x
  - If **k** > key[x] search in the right subtree of x



.

100<sup>1</sup>

41== 32

32

415

12

Search for 41, then search for 53

50

## A node in a BST

class BSTNode {

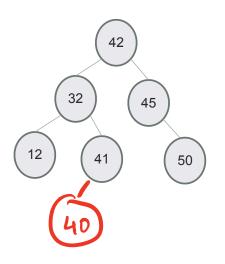
public: BSTNode\* left; BSTNode\* right; BSTNode\* parent; int const data;

```
BSTNode( const int & d ) : data(d) {
    left = right = parent = 0;
  }
};
```

# Define the BST ADT

| Operations              |  |
|-------------------------|--|
| Min                     |  |
| Max                     |  |
| Successor               |  |
| Predecessor             |  |
| Search                  |  |
| Insert                  |  |
| Delete                  |  |
| Print elements in order |  |

# Insert

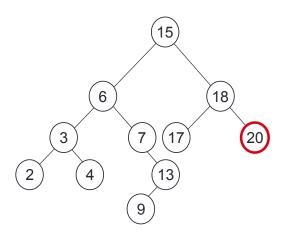


- Insert 40
- Search for the key ( 40)
- Insert at the spot you expected to find it

#### Max

**Goal**: find the maximum key value in a BST Following right child pointers from the root, until a leaf node is encountered. The least node has the max value

Alg: int BST::max()

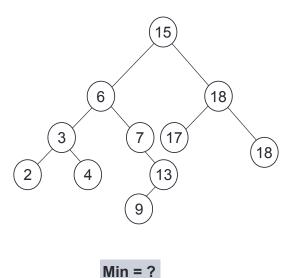


Maximum = 20

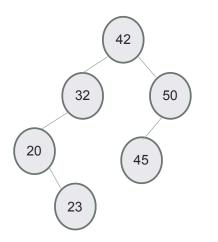
#### Min

Goal: find the minimum key value in a BST Start at the root. Follow left child pointers from the root, until a leaf node is encountered Leaf node has the min key value

```
Alg: int BST::min()
```

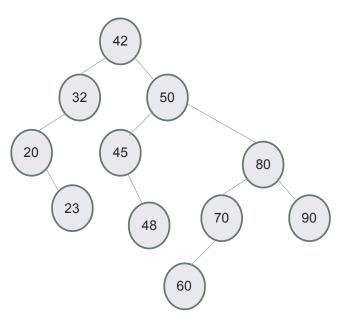


# **Predecessor: Next smallest element**



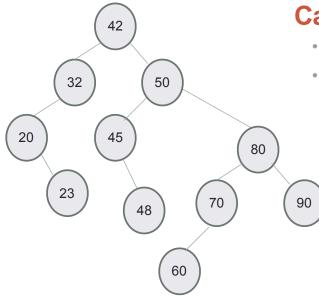
- What is the predecessor of 32?
- What is the predecessor of 45?

# **Successor: Next largest element**



- What is the successor of 45?
- What is the successor of 50?
- What is the successor of 60?

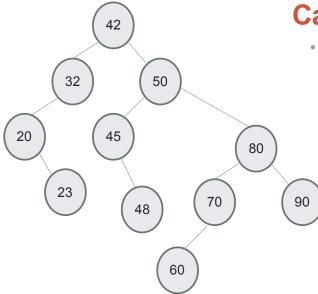
# **Delete: Case 1**



#### Case 1: Node is a leaf node

- Set parent's (left/right) child pointer to null
- Delete the node

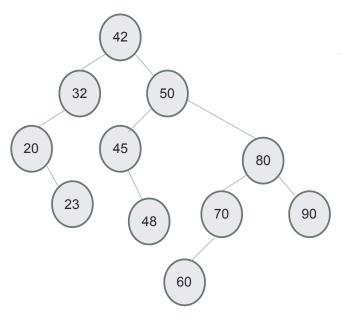
# **Delete: Case 2**



#### Case 2 Node has only one child

· Replace the node by its only child

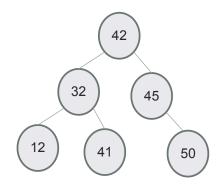
# **Delete: Case 3**



## Case 3 Node has two children

 Can we still replace the node by one of its children? Why or Why not?

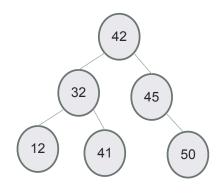
## In order traversal: print elements in sorted order



Algorithm Inorder(tree)

- 1. Traverse the left subtree, i.e., call Inorder(left-subtree)
- 2. Visit the root.
- 3. Traverse the right subtree, i.e., call Inorder(right-subtree)

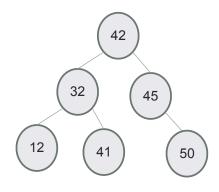
### **Pre-order traversal: nice way to linearize your tree!**



Algorithm Preorder(tree)

- 1. Visit the root.
- 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
- 3. Traverse the right subtree, i.e., call Preorder(right-subtree)

## Post-order traversal: use in recursive destructors!



Algorithm Postorder(tree)

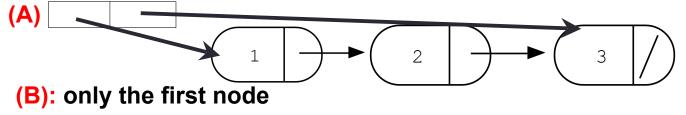
- 1. Traverse the left subtree, i.e., call Postorder(left-subtree)
- 2. Traverse the right subtree, i.e., call Postorder(right-subtree)

3. Visit the root.

```
Concept Question clas
LinkedList::~LinkedList(){
   delete head;
};
```

```
class Node {
    public:
        int info;
        Node *next;
};
```

Which of the following objects are deleted when the destructor of Linked-list is called? head tail



(C): A and B

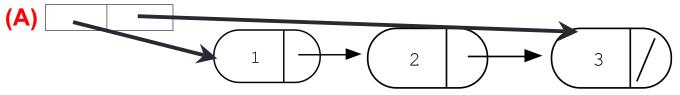
(D): All the nodes of the linked list (E): A and D

```
Concept Question
```

```
LinkedList::~LinkedList(){
    delete head;
}
```

```
Node::~Node(){
    delete next;
}
```

Which of the following objects are deleted when the destructor of Linked-list is called? head tail

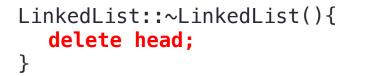


(B): All the nodes in the linked-list

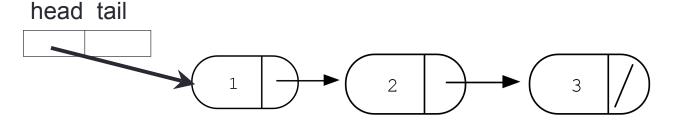
#### (C): A and B

(D): Program crashes with a segmentation fault

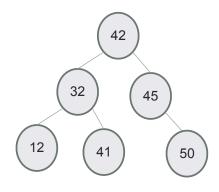
(E): None of the above



Node::~Node(){
 delete next;
}



## Post-order traversal: use in recursive destructors!



Algorithm Postorder(tree)

- 1. Traverse the left subtree, i.e., call Postorder(left-subtree)
- 2. Traverse the right subtree, i.e., call Postorder(right-subtree)

3. Visit the root.