
 
BINARY SEARCH TREES (CONTD)

Problem Solving with Computers-II

class BSTNode {

public:
 BSTNode* left;
 BSTNode* right;
 BSTNode* parent;
 int const data;

 BSTNode(const int & d) : data(d) {
 left = right = parent = 0;
 }
};

!2

A node in a BST

Define the BST ADT

Operations
Search
Insert
Min
Max
Successor
Predecessor
Delete
Print elements in order

42

32

12

45

41 50

!4

Successor: Next largest element
42

32

23

4520

50

• What is the successor of 45?
• What is the successor of 50?
• What is the successor of 60?

48

80

70

60

90

!5

Predecessor: Next smallest element
42

32

23

45
20

50

• What is the predecessor of 32?
• What is the predecessor of 45?

!6

Delete: Case 1
Case 1: Node is a leaf node

• Set parent’s (left/right) child pointer to null
• Delete the node

42

32

23

4520

50

48

80

70

60

90

!7

Delete: Case 2
Case 2 Node has only one child

• Replace the node by its only child
42

32

23

4520

50

48

80

70

60

90

!8

Delete: Case 3
Case 3 Node has two children
• Can we still replace the node by one of its

children? Why or Why not?

42

32

23

4520

50

48

80

70

60

90

!9

In order traversal: print elements in sorted order

42

32

12

45

41 50

Algorithm Inorder(tree)
 1. Traverse the left subtree, i.e., call Inorder(left-subtree)
 2. Visit the root.
 3. Traverse the right subtree, i.e., call Inorder(right-subtree)

!10

Pre-order traversal: nice way to linearize your tree!

42

32

12

45

41 50

Algorithm Preorder(tree)
 1. Visit the root.
 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
 3. Traverse the right subtree, i.e., call Preorder(right-subtree)

!11

Post-order traversal: use in recursive destructors!

42

32

12

45

41 50

Algorithm Postorder(tree)
 1. Traverse the left subtree, i.e., call Postorder(left-subtree)
 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
 3. Visit the root.

Concept Question

head tail
(A)

(B): only the first node
(C): A and B
(D): All the nodes of the linked list
(E): A and D

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the destructor of Linked-list is called?

 class Node {
 public:
 int info;
 Node *next;
 };

Concept Question

head tail
(A)

(B): All the nodes in the linked-list
(C): A and B
(D): Program crashes with a segmentation fault
(E): None of the above

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the destructor of Linked-list is called?

 Node::~Node(){
 delete next;

 }

LinkedList::~LinkedList(){
delete head;

}

 Node::~Node(){
 delete next;

 }

head tail

!15

Post-order traversal: use in recursive destructors!

42

32

12

45

41 50

Algorithm Postorder(tree)
 1. Traverse the left subtree, i.e., call Postorder(left-subtree)
 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
 3. Visit the root.

