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class BSTNode { 

public: 
  BSTNode* left; 
  BSTNode* right; 
  BSTNode* parent; 
  int const data; 

  BSTNode( const int & d ) : data(d) {  
    left = right = parent = 0; 
  }    
};
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Define the BST ADT

Operations
Search
Insert
Min
Max
Successor
Predecessor
Delete
Print elements in order
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Successor: Next largest element
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• What is the successor of 45? 
• What is the successor of 50? 
• What is the successor of 60?
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Predecessor: Next smallest element
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• What is the predecessor of 32? 
• What is the predecessor of 45?
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Delete: Case 1
Case 1: Node is a leaf node 

• Set parent’s (left/right) child pointer to null 
• Delete the node
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Delete: Case 2
Case 2 Node has only one child 

• Replace the node by its only child
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Delete: Case 3
Case 3 Node has two children 
• Can we still replace the node by one of its 

children? Why or Why not?
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In order traversal: print elements in sorted order
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Algorithm Inorder(tree) 
   1. Traverse the left subtree, i.e., call Inorder(left-subtree) 
   2. Visit the root. 
   3. Traverse the right subtree, i.e., call Inorder(right-subtree) 
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Pre-order traversal: nice way to linearize your tree!
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Algorithm Preorder(tree) 
   1. Visit the root. 
   2. Traverse the left subtree, i.e., call Preorder(left-subtree) 
   3. Traverse the right subtree, i.e., call Preorder(right-subtree)  
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Post-order traversal: use in recursive destructors!
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Algorithm Postorder(tree) 
   1. Traverse the left subtree, i.e., call Postorder(left-subtree) 
   2. Traverse the right subtree, i.e., call Postorder(right-subtree) 
   3. Visit the root. 



Concept Question

       

head tail
(A)

(B): only the first node
(C): A and B
(D): All the nodes of the linked list 
(E): A and D

LinkedList::~LinkedList(){ 
delete head; 

} 
                                              

Which of the following objects are deleted when the destructor of Linked-list is called?

    class Node { 
        public: 
           int info; 
           Node *next; 
    };

0



Concept Question

       

head tail
(A)

(B): All the nodes in the linked-list
(C): A and B 
(D): Program crashes with a segmentation fault 
(E): None of the above

LinkedList::~LinkedList(){ 
delete head; 

} 
                                              

Which of the following objects are deleted when the destructor of Linked-list is called?

    Node::~Node(){ 
    delete next; 

    }

0



LinkedList::~LinkedList(){ 
delete head; 

} 
                                              

    Node::~Node(){ 
    delete next; 

    }

       

head tail
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delete head segfeed
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Node 3 isdelete
call todestructorof 2completes

dis Node 2 is deleted
def Call to destructorq node 1 completesNo de 1 is deleted
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Post-order traversal: use in recursive destructors!
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Algorithm Postorder(tree) 
   1. Traverse the left subtree, i.e., call Postorder(left-subtree) 
   2. Traverse the right subtree, i.e., call Postorder(right-subtree) 
   3. Visit the root. 
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