
 
BINARY SEARCH TREES (CONTD)

Problem Solving with Computers-II

class BSTNode {

public:
 BSTNode* left;
 BSTNode* right;
 BSTNode* parent;
 int const data;

 BSTNode(const int & d) : data(d) {
 left = right = parent = 0;
 }
};

!2

A node in a BST
parentf plowedstruct Card be a

char suit
carob

int value

g
left 6 right

class BST

gmroaa r'M'm
IIinL

Thedata storedin anyBSTnode
could beofanytype

egCard as longas theoperation's
Cand

are defined on that type
r

Define the BST ADT

Operations
Search
Insert
Min
Max
Successor
Predecessor
Delete
Print elements in order

42

32

12

45

41 50

root
kit

441 42
us 42

663
I 4 max

Min e
p as
Foundit

!4

Successor: Next largest element
42

32

23

4520

50

• What is the successor of 45?
• What is the successor of 50?
• What is the successor of 60?

48

80

70

60

90

nextlargestmy key

f t
Id int successor int Valette

Our algorithm willbefora private
version

ofthis function that
takes a pointertoano

as inputandreturns
a pointerto

the node with the nett largest
value

NodeB successor PrivateC Nodes
n

Casek nhasarightsubreet
Casta keg n f Keys Tr

if n is parent's right
child

keyLp L key n

h
From

key Cp key Cn L keyer

Case lb
if n is its parent's left

child

if n parent left n

key n C keg p

keyens s They C re

How does keylp compare
with key CTR

keyCp Lkeycin
keyCp Hey

Ctr 50

C Can't say

from
keyCn Keysor 5 keyCp

9
theremin

case 2 n has no right subtree this was left
as an assignment but now thatyou now

about the Inorder Traversal the proofmightbe

easier to follow
successorCng

Cesµtyy
If n in the left child of its

parent has shown
on the figure

to

Tk the left an inordu trainset

AI of the tree wouldprint the parent's

n isleftchildofparent key after painting
n Therefore

Caseres
P P is the successor of n

or

Atff n is the riguchiedgetspartly
then the paint's recursive

call

is done after
n's key is punted

and we proceed to
the guardpaid

beeusive cell OR more gunally
his sightchild proceed all the way bypttutree

until we find a node that is the

8Pant deft child of its parentpaiefuoetm.tk

!5

Predecessor: Next smallest element
42

32

23

45
20

50

• What is the predecessor of 32?
• What is the predecessor of 45?

qpane wife l of I pared

root

Sed

int predessor C
int value

Node n findHC value
return predecessor H

n data

Nodes predecessor H
Node n

!6

Delete: Case 1
Case 1: Node is a leaf node

• Set parent’s (left/right) child pointer to null
• Delete the node

42

32

23

4520

50

48

80

70

60

90

if Inseeft
II nerightis

leaf node

ifCn n parent left
n parentsleft

a O

n else n parent right 20s

leafnode delete ni

!7

Delete: Case 2
Case 2 Node has only one child

• Replace the node by its only child
42

32

23

4520

50

48

80

70

60

90

grain
tee

it ojf.nrnisae.tnsiefIuaiTo7onspareu

n left parent
n parent

if Cn n parent left
n parents left n left

f n parent right 8ns left

delete my

!8

Delete: Case 3
Case 3 Node has two children
• Can we still replace the node by one of its

children? Why or Why not?

42

32

23

4520

50

48

80

70

60

90

I

n

648
11Swap n data

withits

predecessor OR
P its successor
50 delete thepredecessor

11Default Neither
cases

or case 2

an

!9

In order traversal: print elements in sorted order

42

32

12

45

41 50

Algorithm Inorder(tree)
 1. Traverse the left subtree, i.e., call Inorder(left-subtree)
 2. Visit the root.
 3. Traverse the right subtree, i.e., call Inorder(right-subtree)

b

wiI n

what is theoutputofdoingan
inorde

traversal on the above
tree

A 32 12 4142 4550 Tnorder r left
B 12 32 41 4245

50 c'outccr data

C 12 32 42 45 41 50 Incorder r right

D Yone g the above
3

jaYU tree outputofTn orderTraversal

I

12 32 41

i

12

!10

Pre-order traversal: nice way to linearize your tree!

42

32

12

45

41 50

Algorithm Preorder(tree)
 1. Visit the root.
 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
 3. Traverse the right subtree, i.e., call Preorder(right-subtree)

12

42 32 12 41 45 50

iii
Oso

45 50

!11

Post-order traversal: use in recursive destructors!

42

32

12

45

41 50

Algorithm Postorder(tree)
 1. Traverse the left subtree, i.e., call Postorder(left-subtree)
 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
 3. Visit the root.

Concept Question

head tail
(A)

(B): only the first node
(C): A and B
(D): All the nodes of the linked list
(E): A and D

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the destructor of Linked-list is called?

 class Node {
 public:
 int info;
 Node *next;
 };

0

Concept Question

head tail
(A)

(B): All the nodes in the linked-list
(C): A and B
(D): Program crashes with a segmentation fault
(E): None of the above

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the destructor of Linked-list is called?

 Node::~Node(){
 delete next;

 }

0

LinkedList::~LinkedList(){
delete head;

}

 Node::~Node(){
 delete next;

 }

head tail

11callsthefirstnode's acallsthe
destructor next node'sdestructor

I
deletenext deleteneat delete

Og
doesnot

delete head segfeed
call to destructorcompletes

Node 3 isdelete
call todestructorof 2completes

dis Node 2 is deleted
def Call to destructorq node 1 completesNo de 1 is deleted

!15

Post-order traversal: use in recursive destructors!

42

32

12

45

41 50

Algorithm Postorder(tree)
 1. Traverse the left subtree, i.e., call Postorder(left-subtree)
 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
 3. Visit the root.

Cee

U BSTNode C

delete left
del ele right

