RUNNING TIME ANALYSIS

Problem Solving with Computers-II

Performance questions

• How efficient is a particular algorithm?

• CPU time usage (Running time complexity)

- Memory usage
- Disk usage
- Network usage
- Why does this matter?
 - Computers are getting faster, so is this really important?
 - Data sets are getting larger does this impact running times?

How can we measure time efficiency of algorithms?

• One way is to measure the absolute running time

clock_t t; t = clock();

Pros? Cons?

//Code under test

$$t = clock() - t;$$

Which implementation is significantly faster?

```
function F(n) {
    if(n == 1) return 1
    if(n == 2) return 1
return F(n-1) + F(n-2)
}
```

Α.

```
B.
function F(n) {
   Create an array fib[1..n]
   fib[1] = 1
   fib[2] = 1
   for i = 3 to n:
      fib[i] = fib[i-1] + fib[i-2]
   return fib[n]
}
```

C. Both are almost equally fast

A better question: How does the running time grow as a function of input size

```
function F(n) {
    if(n == 1) return 1
    if(n == 2) return 1
return F(n-1) + F(n-2)
}
```

```
function F(n) {
  Create an array fib[1..n]
  fib[1] = 1
  fib[2] = 1
  for i = 3 to n:
     fib[i] = fib[i-1] + fib[i-2]
  return fib[n]
}
```

The "right" question is: How does the running time grow? E.g. How long does it take to compute F(200)?let's say on....

NEC Earth Simulator

Can perform up to 40 trillion operations per second.

The running time of the recursive implementation

The Earth simulator needs 2^{92} seconds for F_{200} .

Time in seconds 2 ¹⁰ 2 ²⁰ 2 ³⁰ 2 ⁴⁰	17 minutes 12 days	<pre>function F(n) { if(n == 1) return 1 if(n == 2) return 1 return F(n-1) + F(n-2) }</pre>
2 ⁷⁰		Let's try calculating F ₂₀₀ using the iterative algorithm on my laptop

Goals for measuring time efficiency

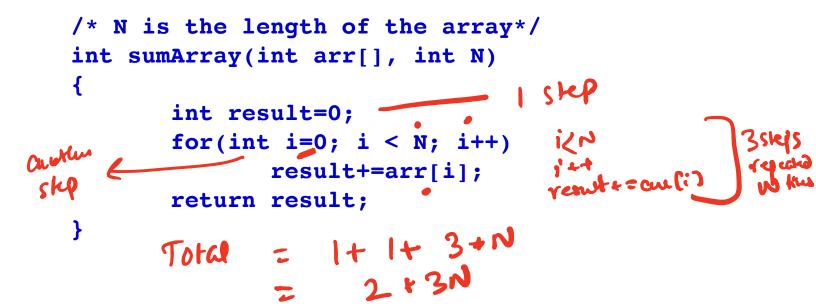
- Focus on the impact of the algorithm: Simplify the analysis of running time by ignoring "details" which may be an artifact of the underlying implementation:
 - E.g., 1000001 ≈ 1000000
 - Similarly, 3n² ≈ n²
- Focus on asymptotic behavior: How does the running time of an algorithm increases with the size of the input in the limit (for large input sizes)

Counting steps (instead of absolute time)

- Every computer can do some primitive operations in constant time:
 - Data movement (assignment)
 - Control statements (branch, function call, return)
 - Arithmetic and logical operations
- By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm

Running Time Complexity

Start by counting the primitive operations



Big-O notation

Ν	Steps = 5*N +3
1	8
10	53
1000	5003
100000	500003
1000000	5000003

- Simplification 1: Count steps instead of absolute time
- Simplification 2: Ignore lower order terms
 Does the constant 3 matter as N gets large?
- Simplification 3: Ignore constant coefficients in the leading term (5*N) simplified to N

Algorithm takes time O(N) pronounced "big oh of N"

Big-O notation lets us focus on the big picture

Recall our goals:

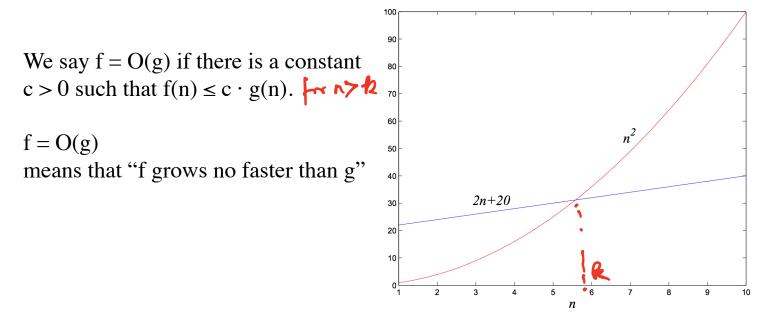
Focus on the impact of the algorithm

Focus on asymptotic behavior (running time as N gets large)
 Here is how for the sumArray function:

Step count: 3+ 5*NDrop the constant additive term: 5*NDrop the constant multiplicative term : NRunning time grows linearly with the input sizeExpress the count using O-notationTime complexity = O(N)(make sure you know what = means in this case)

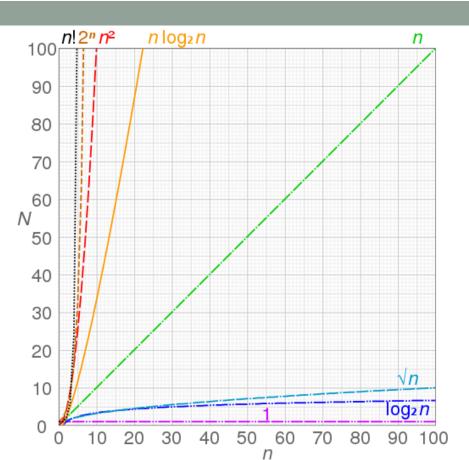
A more precise definition of Big-O

- f(n) and g(n): running times of two algorithms on inputs of size n.
- f(n) and g(n) map positive integer inputs to positive reals.



Orders of growth

- We are interested in how algorithm running time scales with input size
- Big-Oh notation allows us to express that by ignoring the details
- 20N hours v. N² microseconds:
 - which has a higher order of growth?
 - Which one is better?



Writing Big O

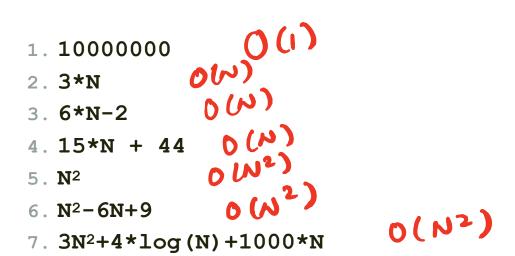
- Simple Rule: Ignore lower order terms and constant factors:
 - 50n log n
 - 7n 3
 - 8n² log n + 5 n² + n + 1000

Common sense rules of Big-O

- 1. Multiplicative constants can be omitted: $14n^2$ becomes n^2 .
- 2. n^a dominates n^b if a > b: for instance, n^2 dominates n.
- 3. Any exponential dominates any polynomial: 3ⁿ dominates n⁵ (it even dominates 2ⁿ).

• Note: even though 50 n log n is O(n⁵), it is expected that such approximation be as tight as possible (*tight upper bound*).

Given the step counts for different algorithms, express the running time complexity using Big-O



For polynomials, use only leading term, ignore coefficients: linear, quadratic

What is the Big O of sumArray2

{

A. $O(N^2)$ C. O(N/2) D. $O(\log N)$

E. None of the array

/* N is the length of the array*/ int sumArray2(int arr[], int N) int result=0; for(int i=0; i < N; i=i+2) result+=arr[i]; return result;

Steps =
$$\frac{N}{2}$$
 = $O(N)$

What is the Big O of sumArray2

A. $O(N^2)$ B. O(N) C. O(N/2) $D. O(\log N)$ E. None of the array Value of Derakon # 34

; apre kiketion Value Q = gk-1 2^{k-1} = N = k= MNH Loop stops when /* N is the length of the array*/ int sumArray2(int arr[], int N) int result=0; for(int i=0; i < N; i=22) result+=arr[i]; return result; Since ; doubles each time ale need to first find how many time the eoop will iterate ; (NH+1) & c = O(logN)

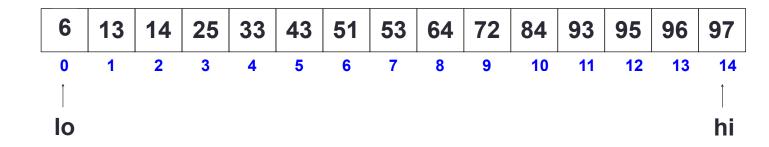
Operations on sorted arrays

- Min :
- Max:
- Median:
- Successor:
- Predecessor:

ou)

0(1

- Search:
- Insert :
- Delete:

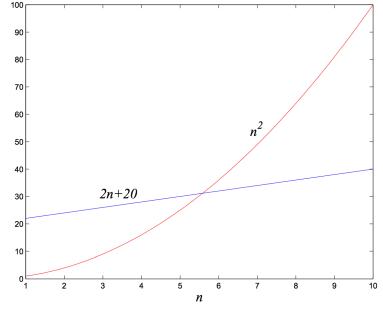


Big-Omega

- f(n) and g(n): running times of two algorithms on inputs of size n.
- f(n) and g(n) map positive integer inputs to positive reals.

We say
$$f = \Omega(g)$$
 if there is a constant $c > 0$
such that $c \cdot g(n) \le f(n)$
for $n \ge k$

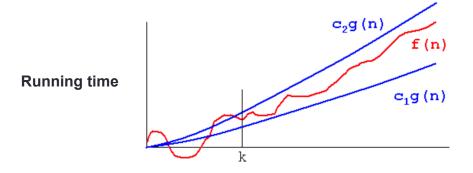
 $f = \Omega(g)$ means that "f grows at least as fast as g"



Big-Theta

- f(n) and g(n): running times of two algorithms on inputs of size n.
- f(n) and g(n) map positive integer inputs to positive reals.

We say $f = \Theta(g)$ if there is are constants c_1, c_2 such that $0 \le c_1g(n) \le f(n) \le c_2g(n)$



Problem Size (n)

How is PA02 going?

- A. Done
- B. On track to finish
- c. Having trouble designing my classes
- D. Stuck and struggling
- E. Haven't started

• PA02 deadline this Friday (02/15)at midnight

Next time

Running time analysis of Binary Search Trees

References: https://cseweb.ucsd.edu/classes/wi10/cse91/resources/algorithms.ppt http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf