
 
RUNNING TIME ANALYSIS
Problem Solving with Computers-II

Performance questions
!2

• How efficient is a particular algorithm?
• CPU time usage (Running time complexity)
• Memory usage
• Disk usage
• Network usage

• Why does this matter?

• Computers are getting faster, so is this really important?
• Data sets are getting larger – does this impact running times?

How can we measure time efficiency of algorithms?

• One way is to measure the absolute running time

• Pros? Cons?

clock_t t;
t = clock();

//Code under test

t = clock() - t;

Which implementation is significantly faster ?

function F(n){
 if(n == 1) return 1
 if(n == 2) return 1
return F(n-1) + F(n-2)
}

A.
function F(n){
 Create an array fib[1..n]
 fib[1] = 1
 fib[2] = 1
 for i = 3 to n:
 fib[i] = fib[i-1] + fib[i-2]
 return fib[n]
}

B.

C. Both are almost equally fast

A better question: How does the running time grow as a function of
input size

function F(n){
 if(n == 1) return 1
 if(n == 2) return 1
return F(n-1) + F(n-2)
}

function F(n){
 Create an array fib[1..n]
 fib[1] = 1
 fib[2] = 1
 for i = 3 to n:
 fib[i] = fib[i-1] + fib[i-2]
 return fib[n]
}

The “right” question is: How does the running time grow?
E.g. How long does it take to compute F(200)?
….let’s say on….

NEC Earth Simulator

Can perform up to 40 trillion operations per second.

The running time of the recursive implementation
The Earth simulator needs 292 seconds for F200.

Time in seconds Interpretation
 210 17 minutes

 220 12 days

 230 32 years

 240 cave paintings

 270 The big bang!

function F(n){
 if(n == 1) return 1
 if(n == 2) return 1
return F(n-1) + F(n-2)
}

Let’s try calculating F200
using the iterative
algorithm on my laptop…..

Goals for measuring time efficiency
• Focus on the impact of the algorithm: Simplify the analysis of
running time by ignoring “details” which may be an artifact of the
underlying implementation:
• E.g., 1000001 ≈ 1000000

• Similarly, 3n2 ≈ n2

• Focus on asymptotic behavior: How does the running time of an
algorithm increases with the size of the input in the limit (for large
input sizes)

Counting steps (instead of absolute time)
• Every computer can do some primitive operations in constant time:

• Data movement (assignment)

• Control statements (branch, function call, return)

• Arithmetic and logical operations

• By inspecting the pseudo-code, we can count the number of primitive
operations executed by an algorithm

Running Time Complexity

/* N is the length of the array*/
int sumArray(int arr[], int N)
{
 int result=0;
 for(int i=0; i < N; i++)
 result+=arr[i];
 return result;
}

Start by counting the primitive operations

I step
o

aww III an
344

stop WKus

Total It It 3am
2 t 3N

Big-O notation

N Steps = 5*N +3
1 8
10 53
1000 5003
100000 500003
10000000 50000003

• Simplification 1: Count steps instead of absolute
time

• Simplification 2: Ignore lower order terms
• Does the constant 3 matter as N gets large?

• Simplification 3: Ignore constant coefficients in
the leading term (5*N) simplified to N

Algorithm takes time O(N) pronounced “big oh of N”

Big-O notation lets us focus on the big picture
Recall our goals:
• Focus on the impact of the algorithm

• Focus on asymptotic behavior (running time as N gets large)
Here is how for the sumArray function:

Step count : 3+ 5*N
Drop the constant additive term : 5*N
Drop the constant multiplicative term : N
Running time grows linearly with the input size
Express the count using O-notation
Time complexity = O(N)
(make sure you know what = means in this case)

A more precise definition of Big-O
• f(n) and g(n): running times of two algorithms on inputs of size n.
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there is a constant
c > 0 such that f(n) ≤ c · g(n).

f = O(g)
means that “f grows no faster than g”

fr n k

i

I a

Orders of growth
• We are interested in how

algorithm running time scales
with input size

• Big-Oh notation allows us to
express that by ignoring the
details

• 20N hours v. N2 microseconds:
• which has a higher order of

growth?

• Which one is better?

Writing Big O
• Simple Rule: Ignore lower order terms and constant factors:

• 50n log n

• 7n – 3

• 8n2 log n + 5 n2 + n + 1000

Common sense rules of Big-O
1. Multiplicative constants can be omitted: 14n2 becomes n2 .

2. na dominates nb if a > b: for instance, n2 dominates n.

3. Any exponential dominates any polynomial: 3n dominates n5 (it even
dominates 2n).

• Note: even though 50 n log n is O(n5), it is expected that such
approximation be as tight as possible (tight upper bound).

Given the step counts for different algorithms, express the
running time complexity using Big-O

1. 10000000
2. 3*N
3. 6*N-2
4. 15*N + 44
5. N2
6. N2-6N+9
7. 3N2+4*log(N)+1000*N

For polynomials, use only leading term, ignore coefficients: linear, quadratic

047
OW
OW
O N

OUN2
o NZ

O NZ

What is the Big O of sumArray2

/* N is the length of the array*/
int sumArray2(int arr[], int N)
{
 int result=0;
 for(int i=0; i < N; i=i+2)
 result+=arr[i];
 return result;
}

A. O(N2)

B. O(N)
C. O(N/2)
D. O(log N)

E. None of the array

0

Steps Nyt C O N

What is the Big O of sumArray2

/* N is the length of the array*/
int sumArray2(int arr[], int N)
{
 int result=0;
 for(int i=0; i < N; i=i/2)
 result+=arr[i];
 return result;
}

A. O(N2)

B. O(N)
C. O(N/2)
D. O(log N)

E. None of the array

Value of i afar kituation

It za N hedgnLoop stops when

it 2I

Iteration Value of i
1 1 Since i doubles each time we
2 2 need to first find howmany times3 4 the loop will iterate4 8 Sleeps

ik 2 Catti c OccosN

Operations on sorted arrays

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

lo hi

• Min :
• Max:
• Median:
• Successor:
• Predecessor:
• Search:
• Insert :
• Delete:

OU
04
O l
O I
O l
0ClogN Binary Search
0W
O N

Big-Omega
• f(n) and g(n): running times of two algorithms on inputs of size n.
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = Ω(g) if there is a constant c > 0
such that c · g(n) ≤ f(n)
for n>= k

f = Ω(g)
means that “f grows at least as fast as g”

Big-Theta
• f(n) and g(n): running times of two algorithms on inputs of size n.
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = Θ(g) if there is are constants
c1, c2 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

Running time

Problem Size (n)

How is PA02 going?
A. Done
B. On track to finish
C. Having trouble designing my classes
D. Stuck and struggling
E. Haven’t started

• PA02 deadline this Friday (02/15)at midnight

Next time
• Running time analysis of Binary Search Trees

References:
https://cseweb.ucsd.edu/classes/wi10/cse91/resources/algorithms.ppt
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

