
WELCOME TO CS 24!
Problem Solving with Computers-II

Instructor: Diba Mirza

Read the syllabus. Know what’s required. Know how to get help.

About this course
2

Data Structures and C++ Complexity Analysis

You will learn to:
• Design and implement larger programs that run fast
• Organize data in programs using data structures
• Analyze the complexity of your programs
• Understand what goes on under the hood of programs

About the team

3

• Communication with staff via Piazza
• Lectures, sections, OH will be remote for the first two weeks
• Include [CS24] in the subject line of any email communication with me

Note: OH schedule may change after we switch to in person

** Ask questions about class examples, assignment questions, or other CS topics. **

• TAs: April Sanchez, Lucas Relic, Jiarui Zhu, Shichang
Liu, Nawel Alioua, Bowen Zhang Vinothini Gunasekaran,
Roman Aguilera

• ULAs: Lucas Nguyen, Vanessa Salgado
• ULAs in training: Julian Wong, Allison Huang

Course Logistics
• Coure website: https://ucsb-cs24.github.io/w22

• If you have a section conflict, you may informally switch your section time.
Post to the “section swap” thread on Piazza to announce the switch.

• NO MAKEUPS ON EXAMS!

• NO extensions on assignment deadlines. Keep track of due dates published
on our class calendar: https://ucsb-cs24.github.io/w22/info/calendar/

• To complete the labs you need a college of engineering account. If you don’t
have one yet, send an email to help@engineering.ucsb.edu

4

https://ucsb-cs24.github.io/w22
https://ucsb-cs24.github.io/w22/info/calendar/
mailto:help@engineering.ucsb.edu

iClicker Cloud
• Instructions to register for iclicker cloud for free are on Gauchospace
• Download the iclicker REEF app to participate in class

5

Required textbook
Zybook: CMPSC 24: Problem Solving with Computers II

You must attend class and lab sections
You must prepare for class

You must participate in class

Recommended textbook
• Problem Solving with C++, Walter Savitch, Edition 9

About you…
What is your familiarity/confidence with C++ memory-management?
A. Know nothing or almost nothing about it.
B. Used it a little, beginner level.
C. Some expertise, lots of gaps though.
D. Lots of expertise, a few gaps.
E. Know too much; I have no life.

About you…
What is your familiarity/confidence with using git version control ?
A. Know nothing or almost nothing about it.
B. Used it a little, beginner level.
C. Some expertise, lots of gaps though.
D. Lots of expertise, a few gaps.
E. Know too much; I have no life.

About lectures
• I will not be a talking textbook
• I love interaction: Ask questions anytime over chat but wait for a few minutes

for me to answer.
• I’ll ask you questions too! Be ready to discuss and participate over chat and by

responding to multiple choice questions (clicker cloud).
• Practice with the chat window:

• What are looking forward to this quarter?
• What questions do you have?

Procedural Programming
• Break down a problem into sub tasks (functions)
• Algorithm to bake a cake

 Preheat the oven to 350F

 Get the ingredients: 2 eggs, 1 cup flour, 1 cup milk

 Mix ingredients in a bowl
 Pour the mixture in a pan

 Place in the over for 30 minutes

Object Oriented Programming:
A cake baking example
• Solution to a problem is a system of interacting objects
• An object has attributes and behavior
• What are the objects in this example?

 1. Preheat the oven to 350F

 2. Get the ingredients: 2 eggs, 1cup flour, 1 cup milk

 3. Mix ingredients in a bowl
 4. Pour the mixture in a pan

 5. Place in the over for 30 minutes

Objects have attributes and behavior:
A cake baking example

Object Attributes Behaviors

Oven Size
Temperature
Number of racks

Turn on
Turn off
Set temperature

Bowl Capacity
Current amount

Pour into
Pout out

Egg Size Crack
Separate(white from
yolk)

12

A class: pattern for describing similar objects
A generic pattern that is used to describe objects that have similar
attributes and behaviors
e.g. a bowl and a pan may be described by the same class

class Dish{
void pourIn(double amount);
void pourOut(double amount);
double capacity;
double currentAmount;

};

13

Objects vs classes
class Dish{

void pourIn(double amount);
void pourOut(double amount);
double capacity;
double currentAmount;

};
 //Creating objects of this class

14

Concept: Classes describe objects

• Every object belongs to (is an instance of) a class
• An object may have fields, or variables

• The class describes those fields

• An object may have methods
• The class describes those methods

• A class is like a template, or cookie cutter

15

Concept: Classes are like Abstract Data Types
• An Abstract Data Type (ADT) bundles together:

• some data, representing an object or "thing"
• the operations on that data

• The operations defined by the ADT are the only operations permitted on its data
• ADT = classes + information hiding

class Dish{
public:

void pourIn(double amount);
void pourOut(double amount);

private:
double capacity;
double currentAmount;

};

16

Approximate Terminology
• instance = object
• field = instance variable
• method = function
• sending a message to an object = calling a function

17

Some advice on designing classes
• Always, always strive for a narrow interface
• Follow the principle of information hiding:

• the caller should know as little as possible about how the method does
its job

• the method should know little or nothing about where or why it is being
called

• Make as much as possible private
• Your class is responsible for it’s own data; don’t allow other classes to
easily modify it!

What we have spoken about so far?

• Class = Data + Member Functions.
• Abstract Data Type = Class + information hiding
• How to activate member functions.
• But you still need to learn how to write the bodies of a class’s
methods.

Next time
• Implementing C++ classes

• information hiding with access specifiers
• Constructors

