BST RUNNING TIME ANALY SIS

Problem Solving with Computers-Il C++



L
Big-Omega
e f(n) and g(n) map positive integer inputs to positive reals.

We say f = Q(g) if there are constants ¢ > 0, k>0 such that
c-g(n)=<f(n) forn>= Kk

100

90

f=0Q(g)

means that “f grows at least as fast as g”

8ot
70}
60}
50}
40l
30} 2n+20
20f

10

0

L I I I I I ! !
1 2 3 4 5 6 7 8 9 10



L
Big-Theta

e f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there are constants c,, ¢,, k such that
0 <c,g(n) <f(n) <c,g(n), for n >=k

f(n)

Running time
<9 (n)

N/ k

Problem Size (n)



Binary Search Trees

- WHAT are the operations supported?
- HOW do we implement them?

- WHAT are the (worst case) running times of each operation?



« Path — a sequence of nodes and edges connecting a node with another node.

* A path starts from a node and ends at another node or a leaf
« Height of node — The height of a node is the number of edges on the longest

downward path between that node and a leaf.

6

BSTs of different heights are possible with the same set of keys
Examples for keys: 12, 32, 41, 42, 45



Worst case Big-O of search, insert, min, max

Given a BST of height H with N nodes,
what is the worst case complexity of
searching for a key?

A.

B
C.
D
E




Worst case Big-O of predecessor / successor

Given a BST of height H and N nodes,
what is the worst case complexity of finding
the predecessor or successor key?

A

B
C
D
E

- 0O(1)

. O(log H)

. O(H)

. O(H*log H)
- O(N)



Worst case Big-O of delete

Given a BST of height H and N
nodes, what is the worst case
complexity of deleting a node?

A

B
C
D
E

- 0O(1)

. O(log H)

. O(H)

. O(H*log H)
- O(N)



Big O of traversals

@ In Order:
Pre Order:
@ e Post Order:



S
Types of BSTs

Level 0 e Balanced BST:

Level 1
a e Full Binary Tree: Every node other than the

leaves has two children.
Level 2 @

Complete Binary Tree: Every level, except
possibly the last, is completely filled, and all
nodes are as far left as possible



. S
Relating H (height) and N (#nodes)

Level O

Level 1

Level 2

What is the height (exactly) of a full binary tree in terms of N?



Balanced trees

- Balanced trees by definition have a height of O(log N)

- A completely filled tree is one example of a balanced tree

- Other Balanced BSTs include AVL trees, red black trees and so on
- Visualize operations on an AVL tree: https://visualgo.net/bn/bst



https://visualgo.net/bn/bst

L
Big-O analysis of iterative Fibonacci

function F(n) {
Create an array fib[1l. .n]
fib[1] 1
fib[2] 1
for i = 3 to n:

fib[i] = £fib[i-1] + fib[i1-2]
return fib[n]

}



Big-O analysis of recursive Fibonacci

function F(n) {
if(n == 1) return 1
if(n == 2) return 1
return F(n-1) + F(n-2)
}

What takes so long? Let’s unravel the recursion...

F(n)
F(n-1) F(n-2)
F(n-2) F(n-3) F(n-3) F(n-4)

/N /N SN TN

F(n-3) F(n-4) F(n-4) F(n-5) F(n-4) F(n-5) F(n-5) F(n-6)

The same subproblems get solved over and over again!



