BST RUNNING TIME ANALYSIS

Problem Solving with Computers-I| C-l--'-

e —_—-.—_.—.——_—
Big-Omega
* f(n) and g(n) map positive integer inputs to positive reals.

We sayl(f = Qi :g")klf there are constants ¢ > 0, k>0 such that
c: g(n)=<f(n) forn>= k

100

90

80t {UO

701

f= Q(g)
means that “f grows at least as fast as g”

——

col
sol
wf g(n)
30 2n+20

ol

10

0

e
Big-Theta

* f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there are constants ¢, ¢,, k such that
0 <c,g(n) <f(n) < c,g(n), for n >=k

Running time

k

Problem Size (n)

Binary Search Trees

. W}-IAT are the operations supported?

- HOW do we implement them?
/7

- WHAT are the (worst case) running times of each operation?
P

@ » Path — a sequence of nodes and edges connecting a node with another node.

> — ap K’B'éth starts from a node and ends at another node or a leaf

» Height of node — The height of a node is the number of edges on the longest
downward path between that node and a leaf.

1. 2. 2 3- \
o cE: R
R=N ®, 22 942> Y)
{2 >22 2 W UL . ‘ . "
Pesont 5 B fleights 2 Hedid -

BSTs of different heights are possible with the same set of keys
Examples for keys: 12, 32, 41, 42, 45

Worst case Big-O of search, insert, min, max :o&i>

—

T @ Given a BST of height@with(}@nodes,
H , what is the worst case complexity of
1 @ @ é searching for a key?

& @ ~om
B. O(log H)
O(H Nofst Cobe-
Besy case 4 Scardhiyg ov @ LZ
weq o eor D O(Hlog H)
v]ap E. O(N)

sk caneg S v o deod et 3
K edges WY -

Worst case Big-O of predecessor / successor

Y

2
Ox©C
ORONOC

Best cont o)

INOALE

poe: O 01D

Given a BST of height H and N nodes,
what is the worst case complexity of finding
the predecessor or successor key?

A O(1)

D. O(H*log H)
E. O(N)

Worst case Big-O of delete

@ Given a BST of height H and N
nodes, what is the worst case
@ @ complexity of deleting a node?

A O(1)
e Q @ B. O(log H)
(O oH)

D. O(H*log H)
E. O(N)

Big O of traversals

@ In Order: O(™>
Pre Order: O(
e@@ @ Post Order: 0 (")
@ .

ex.cepy

Fowesrseds QYR o Ce‘—-(—)
W\ 0 Pd&l\w

Types of BSTs
Height o he dree
_ M)
Level 0 Balanced BST: H o= OC fog Jf
ey ANL, 2co0- Qlock Trees

Level 1 o

FullBinary Tree: Every node other than the

leaves has two children.
Level 2 8 cba&&mtea B

Qow ek Q/W\ <7

Complete Binary Tree: Every level, except
possibly the last, is completely filled, and all
nodes are as far left as possible

T = C.\fn'7’+ GN

Relatlng H (helght) and N (#nodes) Al = 7
z 2 _ __\ ;‘\ Level O
o e . H Level 1
Q7T
Q,Wﬂ _ N) ‘L Level 2

H = logoy) = n (N 0(203 N)

What is the height (exactly) of a full blnary tree in terms of N?

Heny = oy 2 0] 1 e 1)
MWD & L001C‘“’0 -t L
HIND = of Dos N)

Balanced trees

- Balanced trees by definition have a height of O(log N)
- A completely filled tree is one example of a balanced tree
- Other Balanced BSTs include AVL trees, red black trees and so on

- Visualize operations on an AVL tree: https://visualgo.net/bn/bst
/

https://visualgo.net/bn/bst

Big-O analysis of iterative Fibonacci

function F(n) {

Create an array fib[l. .n] ()C\)
£ib[1] = 1 -
fib[2] =1

for 1 = 3 to n: & OC“)
fib[i] = fib[i-1] + fib[i—2]:) CDC‘)
return fib|[n]

}

Ty = O F om0ty

- OCﬂ\

Big-O analysis of recursive Fibonacci

What takes so long? Let’s unravel the recursion..

function F(n) {

~—1if(n == 1) return 1:}

~if(n == 2) return 1
return F(n-1) + F(n 2) _
} —
()
Tea) + Bop prmitec £leps P it Fr 3 Eey Eg
T (@3 Cl he same subproblems get solved over and over again!
TW =\ ~ e collh
_f(“') — T(ﬂ.\) /\'\(ﬂ’i)“’ 5 Tn) = C ﬁ‘ 0‘+ *f(l thow C

Peouirens (edodom

wd lower Youndd Jine f\\m‘beftg, fﬁmqrm

We o obtain W
oD MoiuUM yodes Lo elliree

ol .\07 Kineivy ooy X winivaum

-\) TN = o(X)
",

a T e (2

T 7 LL?\II)

rno\"‘\

Ty £ (@

