HEAPS

Probl
em Solvi
lving with Com
puters
-1l

Ct++

“.f\cl £109% s
gsind o=) .
int mall Ot
cout<<"%03“
retvr® =
o |
N

Reminders

* PAO2 released, due Friday of Week 10 .

* Lab07 due Wed of Week 10
« zyBook, Chapter 8 activities due Monday of Finals week

L
Heaps

» Clarification
* heap, the data structure is not related to heap, the region of memory

« What are the operations supported?

« What are the running times?

Heaps
Min-Heaps Max-Heap BST
* Insert :
* Min:
* Delete Min:
- Max
* Delete Max

Applications:
- Efficient sort
- Finding the median of a sequence of numbers
- Compression codes

Choose heap if you are doing repeated insert/delete/(min OR max) operations

5
std::priority_queue (STL's version of heap)

A C++ priority queue is a generic container, and can store any data type

on which an ordering can be defined: for example ints, structs (Card),
pointers etc.

#include <queue>
priority queue<int> pdqg;

Methods:

*push() //insert

* pop () //delete max priority item

*top() //get max priority item

*empty() //returns true if the priority queue is empty
*size() //returns the number of elements in the PQ

- You can extract object of highest priority in O(log N)

- To determine priority: objects in a priority queue must be comparable to each other

STL Heap implementation: Priority Queues in C++

What is the output of this code?

priority queue<int> pdqg;

A.10 2 80
pg.push(10); B.2 10 80
pg.push(2); C.80 10 2
pg.push(80); D.80 2 10

t<< .t ? .

cout<<pq.top() E. None of the above
Pg.pop();
cout<<pq.top();
pPg.pop();

cout<<pq.top():;
pg.pop();

std::priority _queue template arguments

template <
class T,
class Container= vector<T>,
class Compare = less <T>
> class priority queue;

The template for priority _queue takes 3 arguments:

1. Type elements contained in the queue.

2. Container class used as the internal store for the priority _queue, the default is
vector<T>

3. Class that provides priority comparisons, the default is less

I N
std::priority _queue template arguments

//Template parameters for a max-heap
priority queue<int, vector<int>, std::less<int>> pq;

//Template parameters for a min-heap
priority queue<int, vector<int>, std::greater<int>> pq;

. S
Comparison class

- Comparison class: A class that implements a function operator for comparing
objects

Class compareClass({
bool operator()(int& a, int & b) const {

return a>b;

}
¥

. A
Comparison class

Class compareClass({
bool operator()(int& a, int & b) const {
return a>b;

}
i
int main(){ What is the output of this code?
compareClass c; A.1

cout<<c (10, 20)<<endl; B.O0
} C.Error

STL Heap implementation: Priority Queues in C++

Class cmp({
bool operator()(int& a, int & b) const {

return a>b;

}

}i
priority queue<int, vector<int>, cmp> pg;
pg.push(10);
pg.push(2);
pg.push(80);

t<<pqg.t ;
cout<<pq.top() Output:
Pg.pop();
cout<<pg.top();
Pq.pPop () ; pqg 1s a heap

cout<<pg.top():;
Pg.pop();

http://pq.top
http://pq.top
http://pq.top

L
Heaps as binary trees

 Rooted binary tree that is as complete as possible
* In a min-Heap, each node satisfies the following heap property:
key(x)<= key(children of x)

Min Heap with 9 nodes

Where is the minimum element?

Heaps as binary trees

 Rooted binary tree that is as complete as possible
* In a max-Heap, each node satisfies the following heap property:
key(x)>= key(children of x)

G Max Heap with 9 nodes

° Where is the maximum element?

Structure: Complete binary tree

A heap is a complete binary tree: Each level is as full as possible.
Nodes on the bottom level are placed as far left as possible

L
ldentifying heaps

Starting with the following min-Heap which of the following operations
will result in something that is NOT a min Heap

A. Swap the nodes 40 and 32 Q 0 @

B. Swap the nodes 32 and 43

C. Swap the nodes 43 and 40

D. Insert 50 as the left child of 45 Q @ e G
E. C&D

Insert 50 into a heap

* Insert key(x) in the first open slot at the last level of tree (going from left to right)

* If the heap property is not violated - Done
e Else: while(key(parent(x))>key(x)) swap the key(x) with key(parent(x))

Insert 50, then 35, then 8

oY

L
Delete min

* Replace the root with the rightmost node at the last level

e “Bubble down”- swap node with child with the smallest key value until the
heap property is restored

e:@: -

L
Under the hood of heaps

* An efficient way of implementing heaps is using vectors

 Although we think of heaps as trees, the entire tree can be efficiently
represented as a vector!!

L
Implementing heaps using an array or vector

Value

Index O 1 2 3 4 5 6 7 8 9

e @ e e Using vector as the internal data structure
/ of the heap has some advantages:
 More space efficient than trees

e Easier to insert nodes into the heap

Finding the “parent” of a "node” in the vector representation

° For a key at index i, index of the parent is

0 e (i-1)/2
ONONORO

Value 6 10 12 40 32 43 47 45 41
Index O 1 2 3 4 5 6 7 8

Insert into a heap

* Insert key(x) in the first open slot at the last level of tree (going from left to right)
* If the heap property is not violated - Done
e Else....

Insert the elements {12, 41, 47, 45, 32} in a min-Heap using the vector
representation of the heap

L
Insert 50, then 35

o For a node at index i, index of the parent is

0 e (i-1)/2
@ @ ORO

Value 6 10 12 40 32 43 47 45 41
Index 0 1 2 3 4 5 6 7 8

Traversing down the tree

Value 6 10 12 40 32 43 47 45 41
Index O 1 2 3 4 5 6 7 8

G For a node at index i, what is the index of
the left and right children?
@ @ A. (2%, 2*i+1)
B. (2*i+1, 2*i+2)
@ @ @ G C. (log(i), log(i)+1)
@ Q D. None of the above

L
Delete min

* Replace the root with the rightmost node at the last level

 “Bubble down”- swap node with one of the children until the heap
property is restored

e:@: -

L
Insert 8 into a heap

Value 6 10 12 40 32 43 47 45 41 50 35
Index O 1 2 3 4 5 6 7 8 9 10

After inserting 8, which node is the parent of 8 ?
A. Node 6

B. Node 12

C. None 43

D. None - Node 8 will be the root

