HEAPS

Probl
em Solvi
Iving wi
g with Comput
ers-Il
GitH
ub

wde <30
sP

ysoct
osind nof®
inC mal“(\\
couc<<nﬁvlu S)
retor® =

Reminders

* PAO2 released, due Friday of Week 10 .
» Lab07 due Wed of Week 10
» zyBook, Chapter 8 activities due Monday of Finals week

Heaps (friocity Queve)

« Clarification
* heap, the data structure is not related to heap, the region of memory

» What are the operations supported? o

* What are the run_nmé times?

mm.\'kq?
' 5> oo mun? ke

- Heof?
o\ N
0(Rog ™ \ngect
otog™) delert ™

o>

ox-Hee P
AUTALS topt >
ingest push >
Besele- mor PP
emyty ()

Heaps
Min-Heaps Max-Heap BST
* Insert :
* Min:
* Delete Min:
* Max
* Delete Max

Applications:
- Efficient sort
+ Finding the median of a sequence of numbers
- Compression codes

Choose heap if you are doing repeated insert/delete/(min OR max) operations

I
std::priority _queue (STL's version of heap)

A C++priority queue is a generic container, and can store any data type
on which an ordering can be defined: for example ints, structs (Card),
pointers etc.

#include <queue>
priority queue<int> pgq;

Methods:

*push() //insert

* pop () //delete max priority item

* top() //get max priority item

*empty() //returns true if the priority queue is empty
*size() //returns the number of elements in the PQ

+ You can extract object of highest priority in O(log N)

- To determine priority: objects in a priority queue must be comparable to each other

STL Heap implementation: Priority Queues in C++

What is the output of this code?

priority queue<int> pqg;

A.10 2 80
pg.push(10); B.2 10 80
pd.push(2); C.80 10 2
pg.push(80); D.80 2 10

<< . 7 .
cout<<pq.top() E. None of the above
pg.pop();
cout<<pq.top();
pg.pop();

cout<<pq.top();
Pg.pop();

std::priority _queue template arguments

template <
class T,
class Container= vector<T>,
class Compare = less <T>
> class priority queue;

The template for priority _queue takes 3 arguments:

1. Type elements contained in the queue.

2. Container class used as the internal store for the priority _queue, the default is
vector<T>

3. Class that provides priority comparisons, the default is less

I
std::priority _queue template arguments

//Template parameters for a max-heap
priority queue<int, vector<int>, std::less<int>> pq;

//Template parameters for a min-heap
priority queue<int, vector<int>, std::greater<int>> pq;

I
Comparison class

- Comparison class: A class that implements a function operator for comparing
objects

Class compareClass{
bool operator()(int& a, int & b) const {

return a>b;

}
}i

I T
Comparison class

Class compareClass{
bool operator()(int& a, int & b) const {
return a>b;

}
}i
int main(){ What is the output of this code?
compareClass c; A.1l

cout<<c (10, 20)<<endl; B.O
} C.Error

STL Heap implementation: Priority Queues in C++

Class cmp{
bool operator()(int& a, int & b) const {

return a>b;

}
}i

priority queue<int, vector<int>, cmp> pqg;
pg.push(10);
pg.push(2);
pg.push(80);
<<pq. .
Pg.pop();
cout<<pqg.top();
Pg.pop(); Pqg 1is a heap
cout<<pq.top();
Pg.pop();

http://pq.top
http://pq.top
http://pq.top

Heaps as binary trees

* Rooted binary tree that is as complete as possible
* In a min-Heap, each node satisfies the following heap property:
Q) key(x)<= key(children of x)

Min Heap with 9 nodes

Where is the minimum element?

Heaps as binary trees

* Rooted binary tree that is as complete as possible
* In a max-Heap, each node satisfies the following heap property:
key(x)>= key(children of x)

Max Heap with 9 nodes

Where is the maximum element?

Structure: Complete binary tree
S

A heap is a complete binary tree: Each level is as full as possible.
Nodes on the bottom level are placed as far left as possible

e —_—-.—_.—.——_—
|dentifying heaps

Starting with the following min-Heap which of the following operations
will result in something that is NOT a min Heap

A. Swap the nodes 40 and 32
B. Swap the nodes 32 and 43
C. Swap the nodes 43 and 40
D. Insert 50 as the left child of 45 ot e

@c&n tonep

e -
Insert 50 intoaheap push (59D

* Insert key(x) in the first open slot at the last level of tree (going from left to right)
* If the heap property is not violated - Done
* Else: while(key(parent(x))>key(x)) swap the key(x) with key(parent(x))

untn —\Recy?

e t il 9 v O
s 1.6\,\\' \
Tisery SO

Insert 50, then 35, then 8 U)
— RBubble W
r_/

Pu;h . O(QOSU)

——

Delete min POPOY : delete e “bop’ ey

* Replace the root with the rightmost node at the last level

* “Bubble down”-swap node with child with the smallest key value until the
heap property is restored A

Rup bl J0WVUM

e
Under the hood of heaps

 An efficient way of implementing heaps is using vectors

 Although we think of heaps as trees, the entire tree can be efficiently
represented as a vector!!

Gomplete Vbinary Hee 3 \f_ei'qf

o
0/\0 é\o

Implementing heaps using an array or vector .50

joush 1)
’70 ,) ()

Value £ lo 12 Yo 33— iz 7 ys i QM"+3()
Index 0 1 2 3 4 5 6 7 8 7

A et
/\,<A n. .

Qz) @ @ Using vector as the internal data structure
/ of the heap has some advantages:

* More space efficient than trees
» Easier to insert nodes into the heap

C

Finding the “parent” of a “node” in the vector representation

/@.\ @wy at index i, index of the parent is
i-1)/2 '

Value 6 10
-

5

Index O @__

Insert into a heap

* Insert key(x) in the first open slot at the last level of tree (going from left to right)
* If the heap property is not violated - Done
* Else..

Insert the elementsa@‘ 32} in a min-Heap using the vector

representation of the heap Min-Heap

Vedﬂ ¥s 12
2,2 S R

R
[\ U%\«é\%l@@ A
= @ ‘B

- ', 1\ = . wdex O
° ‘j‘@ Find e OVE7

2 . 2 fie prtent oy 32 17

e
Insert 50, then 35

° For a node at index i, index of the parent is

@ G (i-1)/2
@ @ © O

Value 6 10 12 40 32 43 47 45 41
Index 0 1 2 3 4 5 6 7 8

POP(\: delefe man

Traversing down the tree

12 40 32 43 47 45 41

6
Index O 1 (20 3 4 5 6 7 8

Lenile (1) = &i)
Dosit child (5D = 28 +2
° Fora node at index i, what is the index of

the left and right children?
G @ A. (2, 2*i+1)
ﬂ‘ (2%i+1, 2¥i+2)
@ @ @ G - (log(i), log(i)+1)
@ Q D. None of the above

Value

Delete min

* Replace the root with the rightmost node at the last level

* “Bubble down”- swap node with one of the children until the heap
property is restored

e
Insert 8 into a heap

Value 6 10 12 40 32 43 47 45 41 50 35
Index O 1 2 3 4 5 6 7 8 9 10

After inserting 8, which node is the parent of 8 ?
A. Node 6

B. Node 12

C. None 43

D. None - Node 8 will be the root

